【題目】某學(xué)校是乒乓球體育傳統(tǒng)項目學(xué)校,為進一步推動該項目的開展,學(xué)校準(zhǔn)備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個乒乓球,乒乓球的單價為2元/個,若購買20副直拍球拍和15副橫拍球拍花費9000元;購買10副橫拍球拍比購買5副直拍球拍多花費1600元.
(1)求兩種球拍每副各多少元?
(2)若學(xué)校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.

【答案】
(1)解:設(shè)直拍球拍每副x元,橫拍球每副y元,由題意得,

,

解得, ,

答:直拍球拍每副220元,橫拍球每副260元


(2)解:設(shè)購買直拍球拍m副,則購買橫拍球(40﹣m)副,

由題意得,m≤3(40﹣m),

解得,m≤30,

設(shè)買40副球拍所需的費用為w,

則w=(220+20)m+(260+20)(40﹣m)

=﹣40m+11200,

∵﹣40<0,

∴w隨m的增大而減小,

∴當(dāng)m=30時,w取最小值,最小值為﹣40×30+11200=10000(元).

答:購買直拍球拍30副,則購買橫拍球10副時,費用最少


【解析】(1)設(shè)直拍球拍每副x元,橫拍球每副y元,根據(jù)題意列出二元一次方程組,解方程組即可;(2)設(shè)購買直拍球拍m副,根據(jù)題意列出不等式,解不等式求出m的范圍,根據(jù)題意列出費用關(guān)于m的一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)解答即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有5根小木棒,長度分別為:2、3、4、5、7(單位:cm),從中任意取出3根,
(1)列出所選的3根小木棒的所有可能情況;
(2)如果用這3根小木棒首尾順次相接,求它們能搭成三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N,設(shè)∠AEM=α(0°<α<90°),給出下列四個結(jié)論: ①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④SEMN=
上述結(jié)論中正確的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1 , l2 , 過點(1,0)作x軸的垂線交l1于點A1 , 過點A1作y軸的垂線交l2于點A2 , 過點A2作x軸的垂線交l1于點A3 , 過點A3作y軸的垂線交l2于點A4 , …依次進行下去,則點A2017的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點,連接OF并延長交弧AC于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=2時,求出四邊形ACDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= (k≠0)的圖象經(jīng)過(3,﹣1),則當(dāng)1<y<3時,自變量x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD為弦,CD⊥AB于點E,則下列結(jié)論中不成立的是(

A.∠A=∠D
B.CE=DE
C.CE=BD
D.∠ACB=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖△ABC三個頂點的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.

(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點C為位似中心,在網(wǎng)格中畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標(biāo);A2).
(3)請直接寫出△A2B2C2與△A1B1C1的面積比.SA2B2C2:SA1B1C1=

查看答案和解析>>

同步練習(xí)冊答案