如圖,△ABC中,D、E分別是BC、AC的中點(diǎn),BF平分∠ABC,交DE于點(diǎn)F,若BC=6,則DF的長(zhǎng)是( )
A.3 B.2 C. D.4
A【考點(diǎn)】三角形中位線定理;等腰三角形的判定與性質(zhì).
【分析】利用中位線定理,得到DE∥AB,根據(jù)平行線的性質(zhì),可得∠EDC=∠ABC,再利用角平分線的性質(zhì)和三角形內(nèi)角外角的關(guān)系,得到DF=DB,進(jìn)而求出DF的長(zhǎng).
【解答】解:在△ABC中,D、E分別是BC、AC的中點(diǎn),
∴DE∥AB,
∴∠EDC=∠ABC.
∵BF平分∠ABC,
∴∠EDC=2∠FBD.
在△BDF中,∠EDC=∠FBD+∠BFD,
∴∠DBF=∠DFB,
∴FD=BD=BC=×6=3.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,某古代文物被探明埋于地下的A處,由于點(diǎn)A上方有一些管道,考古人員不能垂直向下挖掘,他們被允許從B處或C處挖掘,從B處挖掘時(shí),最短路線BA與地面所成的銳角是56°,從C處挖掘時(shí),最短路線CA與地面所成的銳角是30°,且BC=20m,若考古人員最終從B處挖掘,求挖掘的最短距離.(參考數(shù)據(jù):sin56°=0.83,tan56°≈1.48,≈1.73,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某校為了解 八年級(jí)學(xué)生課外活動(dòng)書籍借閱情況,從中隨機(jī)抽取了50名學(xué)生課外書籍借閱情況.將統(tǒng)計(jì)結(jié)果列出如下的表格,并繪制如圖所示的扇形統(tǒng)計(jì)圖,其中科普類冊(cè)數(shù)占這50名學(xué)生借閱總冊(cè)數(shù)的40%.
類別 | 科普類 | 教輔類 | 文藝類 | 其他 |
冊(cè)數(shù)(本) | 180 | 110 | m | 40 |
(1)表格中字母m的值等于 ;
(2)該校八年級(jí)共有400名學(xué)生,則可以估計(jì)出八年級(jí)學(xué)生共借閱教輔類書籍約 本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某玩具店進(jìn)了一箱黑白兩種顏色的塑料球3000個(gè)(除顏色外都相同),為了估計(jì)兩種顏色的球各有多少個(gè),將箱子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回箱子里,多次重復(fù)上述過程后,發(fā)現(xiàn)摸到黑球的頻率在0.6附近波動(dòng),據(jù)此可以估算黑球的個(gè)數(shù)約為 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(P為AB中點(diǎn))所在的直線上,得到經(jīng)過點(diǎn)D的折痕DE.則∠DEC的大小為( 。
A.78° B.75° C.60° D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在三只乒乓球上,分別寫有三個(gè)不同的正整數(shù)(用a、b、c表示),三只乒乓球除上面的數(shù)字不同外,其余均相同.將三只乒乓球放在一個(gè)盒子中,無放回的從中依次摸2只乒乓球,將球上面的數(shù)字相加求和.當(dāng)和為偶數(shù)時(shí),記為事件A;當(dāng)和為奇數(shù)時(shí),記為事件B.
(1)設(shè)計(jì)一組a、b、c的值,使得事件A為必然發(fā)生的事件;
(2)設(shè)計(jì)一組a、b、c的值,使得事件B發(fā)生的概率大于事件A發(fā)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),那么CH的長(zhǎng)是( 。
A.2.5 B. C. D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com