【題目】如圖1,四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD.
(1)求證:BD平分∠ABC;
(2)如圖2,點(diǎn)E、F分別在AB、BC上,連接EF,M是EF的中點(diǎn),過(guò)M作EF的垂線交BD于P.求證:AE+CF=PD;
(3)如圖3,在(2)條件下,連AF,若AE=CF,∠DAF=2∠AFE=2α,AF=13,BC=12,(BC>AB).求BD的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)17
【解析】
(1)作DG⊥BC于G,DH⊥BA于H,通過(guò)證明△DAH≌△DCG可證點(diǎn)D到BA和BC的距離相等;
(2)PM是中垂線,因此連接PE、PF,有PE=PF,由第(1)問(wèn)可知∠ABD=∠CBD,則B、E、P、F四點(diǎn)共圓,推出∠EPF是直角,將△BEP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°至△NFP,可以得出BE+BF=BP,注意四邊形ABCD的結(jié)構(gòu)與四邊形PEBF結(jié)構(gòu)一樣,因此同理可得AB+BC=BD,進(jìn)而得出所證結(jié)論.
(3)由于AE=CF,因此可以考慮CF為邊在BC上方構(gòu)造△QCF≌△FEA,連接AQ、AC.可以推出△AFQ是等腰直角三角形,同時(shí)注意△ACD也是等腰直角三角形,∠CAQ是兩個(gè)45°的重疊角,于是∠CAQ=90﹣2α,然后可推出AC=AQ,而AQ=AF=13,BC已知,由勾股定理可算出AB長(zhǎng)度,根據(jù)第(2)問(wèn)中的結(jié)論,BD長(zhǎng)度就自然得出.
解:(1)如圖1,作DG⊥BC于G,DH⊥BA于H.
則∠DHA=∠DGC=90°.
∵∠ABC=∠ADC=90°,
∴∠BAD+∠BCD=180°,
∵∠BAD+∠DAH=180°,
∴∠DAH=∠DCG,
在△DAH和△DCG中:
,
∴△DAH≌△DCG(AAS),
∴DH=DG,
∴BD平分∠ABC.
(2)如圖2,連接PE、PF,
∵M(jìn)為EF中點(diǎn)且PM⊥EF,
∴PE=PF,
∵∠EBP=∠FBP,
∴P、E、B、F四點(diǎn)共圓,
∴∠PEB+∠PFB=∠EBF+∠EPF=180°,
∴∠EBF=90°,
∴∠EPF=90°,
在FC上截取FN=BE,連接PN.
∴∠PFN+∠PFB=180°,
∴∠PFN=∠PEB,
在△PEB和△PFN中:
,
∴△PEB≌△PFN(SAS),
∴PB=PN,∠EPB=∠FPN
∴∠BPN=∠BPF+∠FPN=∠BPF+∠EPB=∠EPF=90°,
∴△BPN是等腰直角三角形,
∴BN=BP,
∵BN=BF+FN=BF+BE,
∴BE+BF=BP,
同理可證BA+BC=BD,
∴AE+BE+BF+FC=(BP+PD)=BP+PD,
∴AE+CF=PD.
(3)如圖3,作△QCF≌△FEA,連接AQ、AC.
則∠EAF=∠CFQ,AF=FQ,∠FQC=∠AFE=α,
∵∠EAF+∠AFB=90°,
∴∠CFQ+∠AFB=90°,
∴∠AFQ=90°,
∴△AFQ是等腰直角三角形,
∴AQ=AF=13,∠FAQ=∠FQA=45°,
∵AD=DC,∠ADC=90°,
∴△ADC是等腰直角三角形,
∴∠DAC=∠DCA=45°,
∴∠DAC+∠FAQ=∠DAF+∠QAC=90°,
∴∠QAC=90°﹣∠DAC=90°﹣2α,
∵∠AQC=∠AQF+∠FQC=45°+α,
∴∠ACQ=180°﹣∠QAC﹣∠AQC=45°+α,
∴AC=AQ=13,
∵BC=12,
∴AB=5,
由(2)可知AB+BC=BD,
∴BD=(AB+BC)=17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠A=90°,AB=AC,D為邊BC中點(diǎn),DE⊥DF,若四邊形AEDF的面積是4,則等腰直角△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC、△FGH中,D、E兩點(diǎn)分別在AB、AC上,F點(diǎn)在DE上,G、H兩點(diǎn)在BC上,且DE∥BC,F(xiàn)G∥AB,F(xiàn)H∥AC,若BG:GH:HC=4:6:5,則△ADE與△FGH的面積比為何?( 。
A. 2:1 B. 3:2 C. 5:2 D. 9:4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)矩形OABC對(duì)角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.若四邊形ODBE的面積為6,則k的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)關(guān)于x的一元二次方程:M: N:,其中,以下列四個(gè)結(jié)論中,錯(cuò)誤的是( )
A. 如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N也有兩個(gè)不相等的實(shí)數(shù)根;
B. 如果方程M有兩根符號(hào)異號(hào),那么方程N的兩根符號(hào)也異號(hào);
C. 如果5是方程M的一個(gè)根,那么是方程N的一個(gè)根;
D. 如果方程M和方程N有一個(gè)相同的根,那么這個(gè)根必定是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“鮮樂(lè)”水果店購(gòu)進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為 10 元/千克,售價(jià)不低于 10 元/千克,且不超過(guò) 16 元/千克,根據(jù)銷(xiāo)售情況,發(fā)現(xiàn)該水果一天的銷(xiāo)售量 y(千克) 與該天的售價(jià) x(元/千克)滿(mǎn)足如下表所示的一次函數(shù)關(guān)系
銷(xiāo)售量 y(千克) | … | 29 | 28 | 27 | 26 | … |
售價(jià) x(元/千克) | … | 10.5 | 11 | 11.5 | 12 |
(1)某天這種水果的售價(jià)為 14 元/千克,求當(dāng)天該水果的銷(xiāo)售量;
(2)如果某天銷(xiāo)售這種水果獲利 100 元,那么該天水果的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某種產(chǎn)品的進(jìn)價(jià)為每件40元,現(xiàn)在的售價(jià)為每件60元,每星期可賣(mài)出300件.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每降價(jià)1元,每星期可多賣(mài)出20件,由于供貨方的原因銷(xiāo)量不得超過(guò)380件,設(shè)這種產(chǎn)品每件降價(jià)x元(x為整數(shù)),每星期的銷(xiāo)售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)該產(chǎn)品銷(xiāo)售價(jià)定為每件多少元時(shí),每星期的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)該產(chǎn)品銷(xiāo)售價(jià)在什么范圍時(shí),每星期的銷(xiāo)售利潤(rùn)不低于6000元,請(qǐng)直接寫(xiě)出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以O(shè)為原點(diǎn)的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,1),直線x=1交x軸于點(diǎn)B.點(diǎn)為線段AB上一動(dòng)點(diǎn),作直線PC⊥PO,交直線x=1于點(diǎn)C.過(guò)P點(diǎn)作直線MN平行于x軸,交y軸于點(diǎn)M,交直線x=1于點(diǎn)N.記AP=x,△PBC的面積為S.
(1)當(dāng)點(diǎn)C在第一象限時(shí),求證:△OPM≌△PCN;
(2)當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),點(diǎn)C也隨之在直線x=1上移動(dòng),求出S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(3)當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),△PBC是否可能成為等腰三角形?如果可能,直接寫(xiě)出所有能使△PBC成為等腰三角形的x的值;如果不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校少年宮數(shù)學(xué)課外活動(dòng)初三小組的同學(xué)為測(cè)量一座鐵塔AM的高度如圖,他們?cè)谄露仁?/span>i=1:2.5的斜坡DE的D處,測(cè)得樓頂?shù)囊苿?dòng)通訊基站鐵塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米。大家根據(jù)所學(xué)知識(shí)很快計(jì)算出了鐵塔高AM。親愛(ài)的同學(xué)們,相信你也能計(jì)算出鐵塔AM的高度!請(qǐng)你寫(xiě)出解答過(guò)程。(數(shù)據(jù)≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com