【題目】如圖,銳角△ABC內(nèi)接于⊙O,點D在⊙O外(與點C在AB同側(cè)),∠ABD=90°,下列結(jié)論:①sinC>sinD;②cosC>cosD;③tanC>tanD,正確的結(jié)論為(
A.①②
B.②③
C.①②③
D.①③

【答案】D
【解析】解:設(shè)BD交⊙O于點E,連接AE, ∵∠C=∠AEB,∠AEB>∠D,
∴∠C>∠D,
∴sin∠C>sin∠D;cos∠C<cos∠D;tan∠C>tan∠D,
∴正確的結(jié)論有:①③.
故選D.

【考點精析】認真審題,首先需要了解三角形的外接圓與外心(過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心),還要掌握解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法))的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=10.點Dy軸上一點,其坐標為(0,2),點P從點A出發(fā)以每秒2個單位的速度沿線段ACCB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.

(1)當點P經(jīng)過點C時,求直線DP的函數(shù)解析式;

(2)如圖②,把長方形沿著OP折疊,點B的對應(yīng)點B′恰好落在AC邊上,求點P的坐標.

(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①2a+b=0;②a+b+c>0;③當﹣1<x<3時,y>0;④﹣a+c<0.其中正確的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+2與x軸交于A,B兩點,與y軸交于點C,AB=4,矩形OBDC的邊CD=1,延長DC交拋物線于點E.

(1)求拋物線的解析式;
(2)如圖2,點P是直線EO上方拋物線上的一個動點,過點P作y軸的平行線交直線EO于點G,作PH⊥EO,垂足為H.設(shè)PH的長為l,點P的橫坐標為m,求l與m的函數(shù)關(guān)系式(不必寫出m的取值范圍),并求出l的最大值;

(3)如果點N是拋物線對稱軸上的一點,拋物線上是否存在點M,使得以M,A,C,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知∠MON=30°, A1,A2,A3,…在射線 ON , B1,B2,B3,…在射線 OM ,A1B1A2A2B2A3,A3B3A4,…均為等邊三角形 OA1=1,A6B6A7的邊長為( )

A. 32 B. 16 C. 8 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC ,AB=AC, E CA 的延長線上,E=AFE,請判 EF BC 的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠B=90°,以AB上的一點O為圓心,以O(shè)A為半徑的圓交AC于點D,交AB于點E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點,E是OB的中點,當BC=2時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C,點D為AP的中點,連結(jié)AC.求證:
(1)∠P=∠BAC
(2)直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C,E是直線l兩側(cè)的點,以C為圓心,CE長為半徑畫弧交l于A,B兩點,又分別以A,B為圓心,大于 AB的長為半徑畫弧,兩弧交于點D,連接CA,CB,CD,下列結(jié)論不一定正確的是(

A.CD⊥l
B.點A,B關(guān)于直線CD對稱
C.點C,D關(guān)于直線l對稱
D.CD平分∠ACB

查看答案和解析>>

同步練習冊答案