如圖,在圓的內(nèi)接四邊形ABCD中,∠ABC=120°,則四邊形ABCD的外角∠ADE的度數(shù)是


  1. A.
    130°
  2. B.
    120°
  3. C.
    110°
  4. D.
    100°
B
分析:先根據(jù)圓內(nèi)接四邊形的對角互補及鄰補角互補得出∠ADC+∠B=180°,∠ADC+∠ADE=180°,然后根據(jù)同角的補角相等得出∠ADE=∠B=120°.
解答:∵四邊形ABCD是圓內(nèi)接四邊形,
∴∠ADC+∠B=180°,
∵∠ADC+∠ADE=180°,
∴∠ADE=∠B.
∵∠B=120°,
∴∠ADE=120°.
故選B.
點評:本題考查的是圓內(nèi)接四邊形的性質(zhì),熟知圓內(nèi)接四邊形對角互補的性質(zhì)是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在圓內(nèi)接四邊形ABCD中,AB=AD,AC=1,∠ACD=60°,則四邊ABCD的面積為( 。
A、1
B、
3
4
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖:在圓內(nèi)接四邊形ABCD中,AB=AD,AC=1,∠ACD=60°,則四邊ABCD的面積為


  1. A.
    1
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

同步練習冊答案