如圖,在平行四邊形ABCD中,E為CD上一點,連接AE、BE、BD,且AE、BD交于點F,S△DEF:S△ABF=4:25,則DE:EC=( 。
分析:先根據(jù)平行四邊形的性質(zhì)及相似三角形的判定定理得出△DEF∽△BAF,再根據(jù)S△DEF:S△ABF=4:10:25即可得出其相似比,由相似三角形的性質(zhì)即可求出
DE
AB
的值,由AB=CD即可得出結論.
解答:解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠EAB=∠DEF,∠AFB=∠DFE,
∴△DEF∽△BAF,
∵S△DEF:S△ABF=4:25,
DE
AB
=
2
5
,
∵AB=CD,
∴DE:EC=2:3.
故選A.
點評:本題考查的是相似三角形的判定與性質(zhì)及平行四邊形的性質(zhì),熟知相似三角形邊長的比等于相似比,面積的比等于相似比的平方是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案