【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Ay軸的正半軸上,點(diǎn)Bx軸的負(fù)半軸上,點(diǎn)C是線段AB上一動(dòng)點(diǎn)CDy軸于點(diǎn)D,CEx軸于點(diǎn)EOA6,ADOE

1)求直線AB的解析式;

2)連接ED,過(guò)點(diǎn)CCFED,垂足為F,過(guò)點(diǎn)Bx軸的垂線交FC的延長(zhǎng)線于點(diǎn)G,求點(diǎn)G的坐標(biāo);

3)在(2)的條件下,連接AG,作四邊形AOBG關(guān)于y軸的對(duì)稱(chēng)圖形四邊形AONM,連接DN,將線段DN繞點(diǎn)N逆時(shí)針旋轉(zhuǎn)90°得到線段PN,HOD中點(diǎn),連接MH、PH,四邊形MHPN的面積為40,連接FH,求線段FH的長(zhǎng).

【答案】1yx+6;(2G點(diǎn)坐標(biāo)為(﹣6,6);(3

【解析】

(1)易證四邊形DCEO為矩形,結(jié)合AD=OE,可得AD=CD,△ACD,△ABO是等腰直角三角形,OB=OA=6,從而獲得A、B兩點(diǎn)的坐標(biāo),然后用待定系數(shù)法就可以求出AB的解析式;
(2)可使用設(shè)參法,設(shè)D點(diǎn)坐標(biāo)為(0,a),用(1)中的幾何關(guān)系將OD、CE、AD、CD、EO表示出來(lái),繼而表示C、E點(diǎn)的坐標(biāo),用待定系數(shù)法求出直線DE的解析式,根據(jù)DE和FG的垂直關(guān)系以及C點(diǎn)的坐標(biāo)求出直線FG的解析式,從而求出點(diǎn)G的坐標(biāo);
(3)設(shè)AD=a,通過(guò)已知的面積關(guān)系建立方程,求出a的值,從而獲得各點(diǎn)的坐標(biāo),在△ADF中利用等面積法求出點(diǎn)F的坐標(biāo),從而求出FH的長(zhǎng).

解:(1)∵CDy軸,CEx

∴∠CDO=∠CEO90°

又∵∠DOE90°

∴四邊形DCEO是矩形

CDOE

又∵ADOE

ADCE

ADCD

∴△ACD是等腰直角三角形

∴∠ACD45°

∴∠ABO45°

∴∠ACD=∠ABO

AOBO6

A0,6),B(﹣6,0

設(shè)直線AB的解析式為ykx+6

A(﹣60)代入,得0=﹣6k+6

解得,k1

∴直線AB的解析式為:yx+6

2

如圖所示,設(shè)D0a),則ODCEaADCDEO6a

Ca6,a),Ea6,0

設(shè)yDEk1x+a,將Ea60)代入,得,

0=(a6k1+a

解得,

yDE

設(shè)yFGk2x+b1

DEFG

k1k2=﹣1

yFG

Ca6,a)代入,得,

解得,

yFG+

∵當(dāng)x=﹣6時(shí),yFG6

G點(diǎn)坐標(biāo)為(﹣6,6

3)根據(jù)題意,如圖所示

可證△ODN≌△NPK

ONNK6

∴四邊形ONKL為正方形

設(shè)ADa,則OHDH3

PKOD6a

LPa

SMHPNSAMKLSAMHSNKPSOLP

6×12

453a+

453a+40

解得a12a210(舍)

FSCD

可得CD2,EC4

ED2

由等面積法

CDCEEDCF

2×42×CF

CF

CD2

DF

CDFSCFFD

FS

SD

F

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解七年級(jí)學(xué)生身體發(fā)育狀況,學(xué)校抽取一部分學(xué)生測(cè)量身高(單位:m),繪制處如下的統(tǒng)計(jì)圖和圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

1)圖a的值為   ;

2)求統(tǒng)計(jì)的這組學(xué)生身高數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

3)如果全校七年級(jí)學(xué)生有300人,那么估計(jì)身高大于1.65m的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0)和Bm0),且3m4,則下列說(shuō)法:①b0;②a+cb;③b24ac;④2b3c;⑤1,正確的是( 。

A.①②④B.①③⑤C.②③④D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

1)如圖1,等腰直角四邊形ABCDABBC,∠ABC90°

①若ABCD1,ABCD,則對(duì)角線BD的長(zhǎng)為 ;

②若ACBD,求證:ADCD;

2)如圖2,在矩形ABCD中,AB5,BC9,點(diǎn)是對(duì)角線上一點(diǎn),且,過(guò)點(diǎn)作直線分別交邊于點(diǎn),使四邊形是等腰直角四邊形.直接寫(xiě)出的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,以BC為斜邊作等腰直角三角形BCD,E是△BCD內(nèi)一點(diǎn),連接BEECBEAB,∠BEC+BAC180°.若EC1,tanABC ,則線段BD的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.

1)收集數(shù)據(jù):從甲、乙兩個(gè)班各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測(cè)試,測(cè)試成績(jī)(百分制)如下:

甲班65 75 75 80 60 50 75 90 85 65

乙班90 55 80 70 55 70 95 80 65 70

2)整理描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績(jī)x

人數(shù)

班級(jí)

50x60

60x70

70x80

80x90

90x100

甲班

1

3

3

2

1

乙班

2

1

m

2

n

在表中:m=______,n=______

3)分析數(shù)據(jù):

①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:

班級(jí)

平均數(shù)

中位數(shù)

眾數(shù)

甲班

72

x

75

乙班

72

70

y

在表中:x=______,y=______

②若規(guī)定測(cè)試成績(jī)?cè)?/span>80分(含80分)以上的學(xué)生身體素質(zhì)為優(yōu)秀,請(qǐng)估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有______人.

③現(xiàn)從甲班指定的2名學(xué)生(11女),乙班指定的3名學(xué)生(21女)中分別抽取1名學(xué)生去參加上級(jí)部門(mén)組織的身體素質(zhì)測(cè)試,用樹(shù)狀圖和列表法求抽到的2名同學(xué)是11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形的邊長(zhǎng)是,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交于點(diǎn),延長(zhǎng)線上一點(diǎn),且始終保持

1)求證:;

2)求證:;

3)當(dāng)時(shí):

①求的值;②若的中點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2-2x+c與直線y=kx+b都經(jīng)過(guò)A0,-3)、B3,0)兩點(diǎn),該拋物線的頂點(diǎn)為C

1)求此拋物線和直線AB的解析式;

2)設(shè)直線AB與該拋物線的對(duì)稱(chēng)軸交于點(diǎn)E,在射線EB上是否存在一點(diǎn)M,過(guò)Mx軸的垂線交拋物線于點(diǎn)N,使點(diǎn)M、N、CE是平行四邊形的四個(gè)頂點(diǎn)?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)設(shè)點(diǎn)P是直線AB下方拋物線上的一動(dòng)點(diǎn),當(dāng)PAB面積最大時(shí),求點(diǎn)P的坐標(biāo),并求PAB面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,矩形ABOC的邊BOx軸的負(fù)半軸上,邊OCy軸的正半軸上,且AB=1OB=,矩形ABOC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)60°后得到矩形EFOD.點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)F,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)D,拋物線y=ax2+bx+c過(guò)點(diǎn)AE,D

1)判斷點(diǎn)E是否在y軸上,并說(shuō)明理由;

2)求拋物線的函數(shù)表達(dá)式;

3)在x軸的上方是否存在點(diǎn)P,點(diǎn)Q,使以點(diǎn)O,BP,Q為頂點(diǎn)的平行四邊形的面積是矩形ABOC面積的2倍,且點(diǎn)P在拋物線上?若存在,請(qǐng)求出點(diǎn)P,點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案