在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.(1)求證:△BEC≌△DEC;(2)延長(zhǎng)BE交AD于F,當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).

 

【答案】

(1證明見(jiàn)解析(2)105°

【解析】解(1)證明:∵四邊形ABCD是正方形

BCCD,(1分)∠ECB=∠ECD=45°(2分)又ECEC∴△BCE≌△DCE(3分)

(2)∵△BCE≌△DCE  ∴∠BEC=∠DECBED (4分)∵∠BED=120°∴∠BEC=60°=∠AEF (5分)∴∠EFD=60°+45°=105°(6分)

(1)根據(jù)正方形的性質(zhì)得出CD=CB,∠DCE=∠BCE,根據(jù)SAS即可證出結(jié)論;

(2)根據(jù)全等三角形的性質(zhì)知對(duì)應(yīng)角相等,即∠BEC=∠DEC=1/2∠BED,又由對(duì)頂角相等、三角形的一個(gè)內(nèi)角的補(bǔ)角是另外兩個(gè)內(nèi)角的和求得∠EFD=∠BEC+∠CAD.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖所示,在正方形ABCD中,E為AD的中點(diǎn),F(xiàn)為DC上的一點(diǎn),且DF=
14
DC.求證:△BEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、在正方形ABCD中,點(diǎn)G是BC上任意一點(diǎn),連接AG,過(guò)B,D兩點(diǎn)分別作BE⊥AG,DF⊥AG,垂足分別為E,F(xiàn)兩點(diǎn),求證:△ADF≌△BAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點(diǎn)M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、在正方形ABCD中,P為對(duì)角線BD上一點(diǎn),PE⊥BC,垂足為E,PF⊥CD,垂足為F,求證:EF=AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形ABCD中,P是CD上一點(diǎn),且AP=BC+CP,Q為CD中點(diǎn),求證:∠BAP=2∠QAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案