【題目】觀察下列表格:請你結合該表格及相關知識,求出b、c的值.b=_________,c=___________

列舉

猜想

3、4、5

32=4+5

5、12、13

52=12+13

7、24、25

72=24+25

……

……

13、bc

132=b+c

【答案】b=84 c=85

【解析】

根據(jù)已知條件可找出規(guī)律132b2c2=(b12;根據(jù)此規(guī)律可求出bc的值.

解:由3,45;

3245,324252=(412;

5,12,13;

521213,52122132=(1212;

7,24,25;

722425,72242252=(2412;

132bcbb1,132b2c2=(b12;

132b2=(b12

解得b84,b185,即c85

所以b84;c85

故填:84,85.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方體的底面是邊長為2cm的正方形,高是6cm

1)如果用一根細線從點A開始經(jīng)過4個側面圍繞一圈到達點B.那么所用的細線最短長度是多少厘米?

2)如果從A點開始經(jīng)過4個側面纏繞2圈到達點B,那么所用細線最短長度是多少厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA是⊙O的切線,A是切點,AC是直徑,AB是弦,連接PB、PC,PCAB于點E,且PA=PB.

(1)求證:PB是⊙O的切線;

(2)若∠APC=3BPC,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC和同一平面內(nèi)的點D

(1)如圖1,點DBC邊上,過DDEBAACE,DFCAABF

① 依題意,在圖1中補全圖形;

② 判斷∠EDF與∠A的數(shù)量關系,并直接寫出結論(不需證明).

(2)如圖2,點DBC的延長線上,DFCA,∠EDF=∠A.判斷DEBA的位置關系,并證明.

(3)如圖3,點D是△ABC外部的一個動點,過DDEBA交直線ACE,DFCA交直線ABF,直接寫出∠EDF與∠A的數(shù)量關系(不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BOC=9°,點AOB上,且OA=1,按下列要求畫圖:以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=( 。

A. 10B. 9C. 8D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某月的月歷表,在此月歷表上可以用一個矩形圈出個位置相鄰的數(shù)(6,78,13,14,15,20,21,22).若圈出的9個數(shù)中,最大數(shù)與最小數(shù)的積為192,則這9個數(shù)的和為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A1的坐標為(1,2),以點O為圓心,以OA1長為半徑畫弧,交直線y=x于點B1.過B1點作B1A2y軸,交直線y=2x于點A2,以O為圓心,以OA2長為半徑畫弧,交直線y=x于點B2;過點B2B2A3y軸,交直線y=2x于點A3,以點O為圓心,以OA3長為半徑畫弧,交直線y=x于點B3;過B3點作B3A4y軸,交直線y=2x于點A4,以點O為圓心,以OA4長為半徑畫弧,交直線y=x于點B4,…按照如此規(guī)律進行下去,點B2018的坐標為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉型升級(下稱乙方案)進行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進行一次性治理(當年完工),從當年開始,所治理的每家工廠一年降低的Q值都以平均值n計算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分數(shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計降低的Q值與當年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反映了小明從家里到超市的時間與距離之間關系的一幅圖。

1)圖中自變量和因變量各是什么?

2)小明到達超市用了多少時間?超市離家多遠?

3)分別求小明從家里到超市時的平均速度是多少?返回時的平均速度是多少?

查看答案和解析>>

同步練習冊答案