【題目】如圖,拋物線y=ax2-2ax+b經(jīng)過點(diǎn)C(0,-),且與x軸交于點(diǎn)A、點(diǎn)B,若tanACO=.
(1)求此拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,點(diǎn)P是線段OB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),MPQ=45,射線PQ與線段BM交于點(diǎn)Q,當(dāng)△MPQ為等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1)y=x2-x-(2)當(dāng)△MPQ為等腰三角形時(shí),點(diǎn)P的坐標(biāo)為(1,0)或(3-,0).
【解析】
(1)根據(jù)拋物線y=ax2-2ax+b經(jīng)過點(diǎn)C(0,-),求出b=-,再根據(jù)tan∠ACO=,求出點(diǎn)A的坐標(biāo),再利用待定系數(shù)法即可得出此拋物線的解析式;
(2)由y=x2-x-=(x-1)2-2,可得M(-1,-2),令y=x2-x-=0,得x1=-1,x2=3,從而可得B(3,0),如圖,作MH⊥OB于點(diǎn)H,則MH=BH=2,可推導(dǎo)得出△MPQ∽△MBP,從而可得當(dāng)△MPQ為等腰三角形時(shí),△MBP也為等腰三角形,然后分情況進(jìn)行討論即可得.
(1)∵C(0,),∴OC=.
∵tanACO=,∴OA=1.∴A(-1,0).
∵點(diǎn)A,C在拋物線y=ax2-2ax+b上,
∴,解得,
∴此拋物線的解析式為y=x2-x-;
(2)∵y=x2-x-=(x-1)2-2,∴M(-1,-2),
令y=x2-x-=0,得x1=-1,x2=3,∴B(3,0),
如圖,作MH⊥OB于點(diǎn)H,則MH=BH=2,
∴∠MBO=45=∠MBP,
又∵∠PMQ=∠BMP,∴△MPQ∽△MBP,
∴當(dāng)△MPQ為等腰三角形時(shí),△MBP也為等腰三角形,
①當(dāng)MQ=PQ時(shí),PM=BP,∠BMP=∠MBP=45,∠MPB=90,
∴點(diǎn)P與點(diǎn)H重合,即P(1,0);
②當(dāng)MQ=MP時(shí),MP=MB,∠MPB=45,∠BMP=90,
∴PH=BH=2,即P(-1,0)(舍去);
③當(dāng)MP=PQ時(shí),BP=BM=,
∴P(3-,0),
綜上所述,當(dāng)△MPQ為等腰三角形時(shí),點(diǎn)P的坐標(biāo)為(1,0)或(3-,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:三角形ABC中,∠A=90,AB=AC,D為BC的中點(diǎn),如圖,E,F分別是AB,AC上的點(diǎn),且BE=AF,求證:△DEF為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:AC=AE;
(2)若點(diǎn)E為AB的中點(diǎn),CD=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4). 點(diǎn)從 出發(fā)以每秒2個(gè)單位長度的速度向運(yùn)動(dòng);點(diǎn)從同時(shí)出發(fā),以每秒1個(gè)單位長度的速度向運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)作垂直軸于點(diǎn),連結(jié)AC交NP于Q,連結(jié)MQ.
【1】點(diǎn) (填M或N)能到達(dá)終點(diǎn);
【1】求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
【1】是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo),若不存在,
說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為測山高,在點(diǎn)A處測得山頂D的仰角為30°,從點(diǎn)A向山的方向前進(jìn)140米到達(dá)點(diǎn)B,在B處測得山頂D的仰角為60°(如圖①).
(1)在所給的圖②中尺規(guī)作圖:過點(diǎn)D作DC⊥AB,交AB的延長線于點(diǎn)C(保留作圖痕跡);
(2)山高DC是多少(結(jié)果保留根號形式)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y=上,點(diǎn)B在雙曲線y=(k≠0)上,AB∥x軸,過點(diǎn)A作AD⊥x軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k的值為( )
A. 6 B. 9 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=kx-1(x>0)的圖象交矩形OABC的邊AB于點(diǎn)D,交邊BC于點(diǎn)E,且BE=2EC.若四邊形ODBE的面積為6,則k=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注.某校學(xué)生會(huì)為了了解垃圾分類知識的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計(jì)圖.
(1)求:本次被調(diào)查的學(xué)生有多少名?補(bǔ)全條形統(tǒng)計(jì)圖.
(2)估計(jì)該校1200名學(xué)生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調(diào)查的“非常了解”的學(xué)生中有2名男生,其余為女生,從中隨機(jī)抽取2人在全校做垃圾分類知識交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com