ABCD中,兩對(duì)角線長(zhǎng)分別為12和10,則邊BC的取值范圍是
[     ]
A.2<BC<6
B.5<BC<6
C.1<BC<11
D.2<BC<22
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖所示,已知△ABC中,D為BC的中點(diǎn),則△ABD和△ACD的面積相等,理由是:
 
;
(2)如圖所示:①在梯形ABCD中,AD∥BC,則△ABC和△DBC的面積相等,理由是:
 
;圖中還有兩對(duì)面積相等的三角形,分別是:
 
,
 

②在梯形ABCD中,AD∥BC,若AD=1,BC=2,且△AOD的面積是a,試求梯形ABCD的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、在?ABCD中,∠DAB的平分線分對(duì)邊BC為3cm和5cm兩部分,則?ABCD的周長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,點(diǎn)E在CD上,點(diǎn)C′在AD上,若把△BCE沿BE折疊,則點(diǎn)C與點(diǎn)C′重合.
(1)在圖①中,直接寫(xiě)出兩對(duì)相等的線段;
(2)如圖②,若把△ABC′沿AD的方向平移AD的長(zhǎng)度,使得點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合.求證:四邊形BCFC′是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

同學(xué)們,學(xué)習(xí)了無(wú)理數(shù)之后,我們已經(jīng)把數(shù)的領(lǐng)域擴(kuò)大到了實(shí)數(shù)的范圍,這說(shuō)明我們的知識(shí)越來(lái)越豐富了!可是,無(wú)理數(shù)究竟是一個(gè)什么樣的數(shù)呢?下面讓我們?cè)趲讉(gè)具體的圖形中認(rèn)識(shí)一下無(wú)理數(shù).
(1)如圖①△ABC是一個(gè)邊長(zhǎng)為2的等腰直角三角形.它的面積是2,把它沿著斜邊的高線剪開(kāi)拼成如圖②的正方形ABCD,則這個(gè)正方形的面積也就等于正方形的面積即為2,則這個(gè)正方形的邊長(zhǎng)就是
2
,它是一個(gè)無(wú)理數(shù).

(2)如圖,直徑為1個(gè)單位長(zhǎng)度的圓從原點(diǎn)O沿?cái)?shù)軸向右滾動(dòng)一周,圓上的一點(diǎn)P(滾動(dòng)時(shí)與點(diǎn)O重合)由原點(diǎn)到達(dá)點(diǎn)O′,則OO′的長(zhǎng)度就等于圓的周長(zhǎng)π,所以數(shù)軸上點(diǎn)O′代表的實(shí)數(shù)就是
π
π
,它是一個(gè)無(wú)理數(shù).

(3)如圖,在Rt△ABC中,∠C=90°,AC=2,BC=1,根據(jù)勾股定理可求得AB=
5
5
,它是一個(gè)無(wú)理數(shù).

好了,相信大家對(duì)無(wú)理數(shù)是不是有了更具體的認(rèn)識(shí)了,那么你是也試著在圖形中作出兩個(gè)無(wú)理數(shù)吧:
1、你能在6×8的網(wǎng)格圖中(每個(gè)小正方形邊長(zhǎng)均為1),畫(huà)出一條長(zhǎng)為
10
的線段嗎?

2、學(xué)習(xí)了實(shí)數(shù)后,我們知道數(shù)軸上的點(diǎn)與實(shí)數(shù)是一一對(duì)應(yīng)的關(guān)系.那么你能在數(shù)軸上找到表示 -
5
的點(diǎn)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

操作:如圖1,在正方形ABCD中,∠EAF=45°根據(jù)要求畫(huà)出圖形并解答:
精英家教網(wǎng)
(1)將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得△AD′F′,請(qǐng)?jiān)趫D中畫(huà)出△AD′F′;
(2)連接EF,寫(xiě)出圖中的兩對(duì)全等三角形,并說(shuō)明理由;
探究:正方形ABCD的邊長(zhǎng)為6,將一塊含45°的三角板按如圖所示的位置擺放,銳角頂點(diǎn)繞點(diǎn)A旋轉(zhuǎn),分精英家教網(wǎng)別交正方形的邊于E、F兩點(diǎn).
(1)當(dāng)EF=5時(shí),求△AEF的面積
(2)求此時(shí)的旋轉(zhuǎn)角∠BAE的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案