已知?ABCD的對(duì)角線AC、BD交于O,△AOB是等邊三角形,AB=4cm,則這個(gè)平行四邊形的周長(zhǎng)為________.

(8+8)cm
分析:由?ABCD的對(duì)角線AC、BD交于O,△AOB是等邊三角形,AB=4cm,易證得?ABCD是矩形,然后由勾股定理求得BC的長(zhǎng),繼而求得答案.
解答:∵△AOB是等邊三角形,AB=4cm,
∴OA=OB=AB=4cm,
∵四邊形ABCD是平行四邊形,
∴AC=BD=8cm,
∴?ABCD是矩形,
∴∠ABC=90°,
∴BC==4(cm),
∴這個(gè)平行四邊形的周長(zhǎng)為:(8+8)cm.
故答案為:(8+8)cm.
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì)、矩形的判定與性質(zhì)、等邊三角形的性質(zhì)以及勾股定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知?ABCD的對(duì)角∠BAD和∠BCD互補(bǔ).
(1)求∠BAD的度數(shù);
(2)若AC=x+
3
+1,BD=3+
3
-x,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們學(xué)過(guò)圓內(nèi)接三角形,同樣,四個(gè)頂點(diǎn)在圓上的四邊形是圓內(nèi)接四邊形,下面我們來(lái)研究它的性質(zhì).
(I)如圖(1),連接AO、OC,則有∠B=
1
2
∠1
,∠D=
1
2
∠2
.∵∠1+∠2=360°∴∠B+∠D=
1
2
×360°=180°
,同理∠BAD+∠BCD=180°,即圓內(nèi)接四邊形對(duì)角(相對(duì)的兩個(gè)角)互補(bǔ).
(II)在圖(2)中,∠ECD是圓內(nèi)接四邊形ABCD的一個(gè)外角,請(qǐng)你探究外角∠DCE與它的相鄰內(nèi)角的對(duì)角(簡(jiǎn)稱內(nèi)對(duì)角)∠A的關(guān)系,并證明∠DCE與∠A的關(guān)系.
(III)應(yīng)用:請(qǐng)你應(yīng)用上述性質(zhì)解答下題:如圖(3)已知ABCD是圓內(nèi)接四邊形,F(xiàn)、E分別為BD、AD延長(zhǎng)線上的點(diǎn),如果DE平分
∠FDC,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,EF過(guò)平行四邊形ABCD的對(duì)角形的交點(diǎn)O,交AD于點(diǎn)E,交BC于點(diǎn)F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長(zhǎng)是
15
15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?ABCD的對(duì)角∠BAD和∠BCD互補(bǔ).
(1)求∠BAD的度數(shù);
(2)若AC=x+數(shù)學(xué)公式+1,BD=3+數(shù)學(xué)公式-x,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我們學(xué)過(guò)圓內(nèi)接三角形,同樣,四個(gè)頂點(diǎn)在圓上的四邊形是圓內(nèi)接四邊形,下面我們來(lái)研究它的性質(zhì).
(I)如圖(1),連接AO、OC,則有數(shù)學(xué)公式,數(shù)學(xué)公式.∵∠1+∠2=360°∴數(shù)學(xué)公式,同理∠BAD+∠BCD=180°,即圓內(nèi)接四邊形對(duì)角(相對(duì)的兩個(gè)角)互補(bǔ).
(II)在圖(2)中,∠ECD是圓內(nèi)接四邊形ABCD的一個(gè)外角,請(qǐng)你探究外角∠DCE與它的相鄰內(nèi)角的對(duì)角(簡(jiǎn)稱內(nèi)對(duì)角)∠A的關(guān)系,并證明∠DCE與∠A的關(guān)系.
(III)應(yīng)用:請(qǐng)你應(yīng)用上述性質(zhì)解答下題:如圖(3)已知ABCD是圓內(nèi)接四邊形,F(xiàn)、E分別為BD、AD延長(zhǎng)線上的點(diǎn),如果DE平分
∠FDC,求證:AB=AC.

查看答案和解析>>

同步練習(xí)冊(cè)答案