21、填空:把下面的推理過程補充完整,并在括號內(nèi)注明理由.
已知:如圖,BC∥EF,AB=DE,BC=EF,試說明∠C=∠F.
解:∵BC∥EF(已知)
∴∠ABC=
∠DEF
兩直線平行,同位角相等

在△ABC與△DEF中
AB=DE
∠ABC=∠DEF

BC=EF

∴△ABC≌△DEF(
SAS
).
∴∠C=∠F(
全等三角形的對應(yīng)角相等
).
分析:由于BC∥EF,所以∠ABC=∠DEF的根據(jù)是兩直線平行,同位角相等,然后再根據(jù)已知條件,判定三角形全等,利用全等三角形的性質(zhì),求出∠C=∠F.
解答:解:解:∵BC∥EF(已知),
∴∠ABC=∠DEF(兩直線平行,同位角相等),
在△ABC與△DEF中,
AB=DE,
∠ABC=∠E,
BC=EF,
∴△ABC≌△DEF(SAS),
∴∠C=∠F(全等三角形的對應(yīng)角相等).
點評:本題主要考查了平行線的性質(zhì),平行線的性質(zhì)定理是證明角相等的重要依據(jù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、填空:把下面的推理過程補充完整,并在括號內(nèi)注明理由.
如圖,點B、D在線段AE上,BC∥EF,AD=BE,BC=EF.
求證:
(1)∠C=∠F;
(2)AC∥DF.
證明:(1)∵BC∥EF(已知)
∴∠ABC=
∠E
∠DEF

∵AD=BE
∴AD+DB=DB+BE
AB
=DE
在△ABC與△DEF中
∠ABC=∠E
BC=EF(
已知

∴△ABC≌△DEF(
SAS

∴∠C=∠F(
全等三角形的對應(yīng)角

(2)∵△ABC≌△DEF
∴∠A=∠FDE(
全等三角形的對應(yīng)角

∴AC∥DF(
內(nèi)錯角相等,兩直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

填空:把下面的推理過程補充完整,并在括號內(nèi)注明理由.
如圖,點B、D在線段AE上,BC∥EF,AD=BE,BC=EF.
求證:(1)∠C=∠F;(2)AC∥DF.
證明:(1)∵BC∥EF(已知)
∴∠ABC=
∠E
∠E
兩直線平行同位角相等
兩直線平行同位角相等

∵AD=BE
∴AD+DB=DB+BE
AB
AB
=DE
在△ABC與△DEF中
AB=DE
∠ABC=∠E
BC=EF(
已知
已知

∴△ABC≌△DEF(
SAS
SAS

∴∠C=∠F(
全等三角形的對應(yīng)角相等
全等三角形的對應(yīng)角相等

(2)∵△ABC≌△DEF
∴∠A=∠FDE(
全等三角形的對應(yīng)角相等
全等三角形的對應(yīng)角相等

∴AC∥DF(
同位角相等兩直線平行
同位角相等兩直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)填空:把下面的推理過程補充完整,并在括號內(nèi)注明理由.

已知:如圖1,BC∥EF,AB=DE,BC=EF,試說明∠C=∠F.
解:∵BC∥EF(已知)
∴∠ABC=
∠E
∠E
兩直線平行,同位角相等
兩直線平行,同位角相等

在△ABC與△DEF中

∴△ABC≌△DEF(
SAS
SAS

∴∠C=∠F(
全等三角形的對應(yīng)角相等
全等三角形的對應(yīng)角相等

(2)如圖2,A、B、E三點在同一條直線上,△ABC和△BDE都是等邊三角形,AD交BC于F,CE分別交BD、AD于G、H,請在圖中找出三對全等三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年河北省保定市七年級下學(xué)期期末考試數(shù)學(xué)卷(解析版) 題型:解答題

填空:把下面的推理過程補充完整,并在括號內(nèi)注明理由.  如圖,點B、D在線段AE上,BC∥EF,AD=BE,BC=EF.

求證:(1)∠C=∠F;

(2)AC//DF

 

查看答案和解析>>

同步練習(xí)冊答案