【題目】如圖①,老舊電視機屏幕的長寬比為43,但是多數(shù)電影圖像的長寬比為2.41,故在播放電影時電視機屏幕的上方和下方會有兩條等寬的黑色帶子.

1)若圖①中電視機屏幕為20寸(即屏幕對角線長度):

①該屏幕的長= 寸,寬= 寸;

②已知“屏幕浪費比=黑色帶子的總面積:電視機屏幕的總面積”,求該電視機屏幕的浪費比.

2 為了兼顧電影的收視需求,一種新的屏幕的長寬比誕生了.如圖②,這種屏幕(矩形ABCD)恰好包含面積相等且長寬比分別為43的屏幕(矩形EFGH)與2.41的屏幕(矩形MNPQ).求這種屏幕的長寬比.(參考數(shù)據(jù):≈2.2,結(jié)果精確到0.1

【答案】1)①16 ,12,;(21.8

【解析】

1)①根據(jù)電視機屏幕的長寬比為43,設(shè)長為4x,則寬為3x,再由勾股定理求出x的值,進而可得出結(jié)論;

②設(shè)在該屏幕上播放長寬比為2.41的視頻時,視頻的寬為a寸(長為16寸),求出a的值,得出黑色帶子的寬度,進而得出其比值;

2)根據(jù)題意得出,得到,再由S矩形EFGHS矩形MNPQ,即可得到,進而可得出結(jié)論.

解:(1)①∵電視機屏幕的長寬比為43,

∴設(shè)長為4x,則寬為3x,

∵電視機屏幕為20寸,

,解得x=4

4x=16,3x=12,

∴該屏幕的長為16寸,寬為12寸;

故答案為:1612

②設(shè)在該屏幕上播放長寬比為2.41的視頻時,視頻的寬為a寸(長為16寸).

,解得 a.所以黑色帶子的寬的和=12

所以屏幕浪費比=

2)由題意:,得:PQBCFGEF

因為S矩形EFGHS矩形MNPQ,所以BC·BC EF·EF

所以,∴≈1.8.答:這種屏幕的長寬比約為1.8

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線x軸負半軸于點A,交y軸于點C,拋物線經(jīng)過點A、C,與x軸的另一交點為B

求拋物線的解析式;

設(shè)拋物線上任一動點P的橫坐標為m

①若點P在第二象限拋物線上運動,過P軸于點N交直線AC于點M,當直線AC把線段PN分成23兩部分時,求m的值;

②連接CP,以點P為直角頂點作等腰直角三角形CPQ,當點Q落在拋物線的對稱軸上時,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】天空之城摩天輪,位于寧波市杭州灣新區(qū)歡樂世界.摩天輪高約126米(最高點到地面的距離).如圖,點O是摩天輪的圓心,AB是其垂直于地面的直徑,小明在地面C處用測角儀測得摩天輪最高點A的仰角為45°,測得圓心O的仰角為30°,求摩天輪的半徑.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 是等邊三角形內(nèi)一點,將線段繞點順時針旋轉(zhuǎn)60°得到線段,連接.若,則四邊形的面積為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校初二學生每周上網(wǎng)的時間,兩位學生進行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛好者中40名學生每周上網(wǎng)的時間;小杰從全校400名初二學生中隨機抽取了40名學生,調(diào)查了每周上網(wǎng)的時間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示:

時間段

(小時/周)

小麗抽樣

人數(shù)

小杰抽樣

人數(shù)

01

6

22

12

10

10

23

16

6

34

8

2

(每組可含最低值,不含最高值)

1)你認為哪位同學抽取的樣本不合理?請說明理由;

2)根據(jù)合理抽取的樣本,把上圖中的頻數(shù)分布直方圖補畫完整;

3)專家建議每周上網(wǎng)2小時以上(含2小時)的同學應(yīng)適當減少上網(wǎng)的時間,估計該校全體初二學生中有多少名同學應(yīng)適當減少上網(wǎng)的時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,E,F,GH分別是邊AB,BC,CD,DA的中點.請你添加一個條件,使四邊形EFGH為矩形,應(yīng)添加的條件是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是為(0,3)、(-1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.

(1)若拋物線過點C、A、A′,求此拋物線的解析式;

(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△OC′D的周長;

(3)點M是第一象限內(nèi)拋物線上的一動點,問:點M在何處時;△AMA′的面積最大?最大面積是多少?并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學團委組織征文活動,并設(shè)立若干獎項.學校計劃派人根據(jù)設(shè)獎情況去購買三種獎品共件,其中型獎品件數(shù)比型獎品件數(shù)的倍少件,型獎品所花費用不超過型獎品所花費用的倍.各種獎品的單價如右表所示.如果計劃型獎品買件,買件獎品的總費用是元.

型獎品

型獎品

型獎品

單價()

1)試求之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;

2)請你設(shè)計一種方案,使得購買這三種獎品所花的總費用最少,并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E是AD邊中點,BD、CE交于點H,BE、AH交于點G,則下列結(jié)論:

①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.

其中正確的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案