【題目】如圖,在Rt△ABC中,∠ABC=90°,

(1)①作∠BCA的平分線,交AB于點O(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).

②以O為圓心,OB為半徑作圓.

(2)在你所作的圖中,AC與⊙O的位置關系是   

(3)在(1)的條件下,若BC=6,AB=8,求⊙O的半徑.

【答案】(1) ①CO即為所求,②⊙O即為所求;(2) 相切;(3) 3

解:(1)①如圖所示:CO即為所求;

②如圖所示:⊙O即為所求;

(2)根據(jù)點O到AC的距離等于OB長,可知AC與⊙O的位置關系是:相切;

故答案為:相切;

(3)過點O連接AC與⊙O的切點E,

∵BC=6,AB=8,∠ABC=90°,

,

由題意可得:CB是⊙O的切線,則CE=CB=6,

設BO=x,則EO=x,AO=6﹣x,

AE=10﹣6=4,

∵在Rt△AOE中,AE2+EO2=AO2,

∴42+x2=(8﹣x)2,

解得:x=3,

∴⊙O的半徑為3.

【解析】試題分析:1根據(jù)角平分線的做法得出即可;利用以O為圓心,OB為半徑作圓直接得出即可;

(2)根據(jù)切線的判定方法直接得出即可;

(3)利用切線長定理以及勾股定理求出⊙O的半徑即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=k1x+6與反比例函數(shù)y2=相交于A、B,與x軸交于點C,過點BBDx軸于點D,已知sinDBC=,OCCD=31

1)求y1y2的解析式;

2)連接OAOB,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).

設這種雙肩包每天的銷售利潤為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?

(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )
A.m3m3=2m3
B.5m2n﹣4mn2=mn
C.(m+1)(m﹣1)=m2﹣1
D.(m﹣n)2=m2﹣mn+n2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a2+b2=12,ab=﹣3,則(a﹣b)2的值應為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某個觀測站測得:空氣中pm2.5含量為每立方米0.0000023g,則將0.0000023用科學記數(shù)法表示為( 。

A. 2.3×107 B. 2.3×106 C. 2.3×105 D. 2.3×104

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O為直線MN上一點,OPMN,在等腰RtABO中, ,ACOPOMCDOB的中點,DEDCMNE

(1) 如圖1,若點BOP上,則①AC OE(”);②線段CA、CO、CD滿足的等量關系式是 ;

(2) 將圖1中的等腰RtABOO點順時針旋轉(),如圖2,那么(1)中的結論②是否成立?請說明理由;

(3) 將圖1中的等腰RtABOO點順時針旋轉(),請你在圖3中畫出圖形,并直接寫出線段CACO、CD滿足的等量關系式 ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:4x2+kx﹣5=(x+1)A(A為多項式),則A=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀:如圖1,在ABC中,BE是AC邊上的中線, DBC邊上的一點,CD:BD=1:2,AD與BE相交于點P,求的值小昊發(fā)現(xiàn),過點A作AFBC,交BE的延長線于點F,通過構造AEF,經(jīng)過推理和計算能夠使問題得到解決如圖2).

1的值為

2參考小昊思考問題的方法,解決問題:

如圖3,在ABC中,ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3

的值;

若CD=2,求BP的長

查看答案和解析>>

同步練習冊答案