【題目】已知,在直角坐標(biāo)系中,有A(0,3),B(2,1),C(﹣3,﹣3)三點(diǎn).
(1)請?jiān)谄矫嬷苯亲鴺?biāo)系中描出各點(diǎn),并畫出三角形ABC;
(2)三角形ABC的面積是 ;(直接寫出結(jié)果)
(3)設(shè)BC交y軸于點(diǎn)P,試求P點(diǎn)的坐標(biāo).
【答案】(1)作圖見解析;(2)9;(3)P點(diǎn)坐標(biāo)為(0,-).
【解析】
(1)根據(jù)A、B、C點(diǎn)的坐標(biāo)描點(diǎn),從而得到△ABc;
(2)用一個(gè)矩形的面積分別減去三個(gè)三角形的面積得到△ABC的面積;
(3)利用S△ABC=S△ABP+S△ACP計(jì)算出AP的長,從而得到P點(diǎn)坐標(biāo).
解:(1)如圖,△ABC為所作;
(2)S△ABC=5×6-×5×4-×2×2-×3×6=9;
故答案為9;
(3)∵S△ABC=S△ABP+S△ACP,
∴×3×AP+×2×AP=9,解得AP=,
∴OP=-3=,
∴P點(diǎn)坐標(biāo)為(0,-).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)“敬老愛老”傳統(tǒng)美德,某校八年級(1)班的學(xué)生要去距離學(xué)校10km的敬老院看望老人,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車出發(fā),結(jié)果乘汽車的同學(xué)早到10min.已知汽車的速度是騎車學(xué)生的4倍,求騎車學(xué)生的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一個(gè)長方形的三個(gè)頂點(diǎn)坐標(biāo)分別為(﹣2,﹣2),(﹣2,3),(5,﹣2),則第四個(gè)頂點(diǎn)的坐標(biāo)( 。
A. (5,3) B. (3,5) C. (7,3) D. (3,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn),作正方形DEFG,連接AE,若BC=DE=2,將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)AE為最大值時(shí),則AF的值_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“友好三角形”.
性質(zhì):如果兩個(gè)三角形是“友好三角形”,那么這兩個(gè)三角形的面積相等.
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O.
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.
探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形紙扇完全打開后,陰影部分為貼紙,外側(cè)兩竹條AB,AC的夾角為120°,弧BC的長為30πcm,AD的長為15cm,則貼紙的面積等于cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6,AD=8,P是BC邊上一個(gè)動點(diǎn)(不與點(diǎn)B重合).設(shè)PA=x,點(diǎn)D到PA的距離為y,求y與x之間的函數(shù)表達(dá)式,并求出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推廣陽光體育“大課間”活動,某中學(xué)決定在學(xué)生中開設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動項(xiàng)目,為了了解學(xué)生對四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請計(jì)算喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若調(diào)查到喜歡“跳繩”的4名學(xué)生中有2名男生,2名女生.現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)D是射線BC上的一個(gè)動點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過點(diǎn)E作BC的平行線,分別交射線AB、AC于點(diǎn)F、G,連接BE.
(1)如圖(a)所示,當(dāng)點(diǎn)D在線段BC上時(shí),
①求證:△AEB≌△ADC;
②探究四邊形BCGE是怎樣特殊的四邊形?并說明理由;
(2)如圖(b)所示,當(dāng)點(diǎn)D在BC的延長線上時(shí),直接寫出(1)中的兩個(gè)結(jié)論是否成立___________;
(3)在(2)的情況下,當(dāng)點(diǎn)D運(yùn)動到____________________時(shí),四邊形BCGE是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com