【題目】在四邊形ABCD中,點E為AB邊上的一點,點F為對角線BD上的一點,且EF⊥AB.若四邊形ABCD為正方形.
①如圖1,請直接寫出AE與DF的數(shù)量關系 ;
②將△EBF繞點B逆時針旋轉到圖2所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關系并說明理由.
【答案】(1)FD=AE;(2)DF=AE
【解析】
(1)由正方形的性質(zhì)可得AB=AD,∠ABD=45°,∠A=90°,可得BD=AB,由平行線分線段成比例可得,可得FD=AE;
(2)由旋轉的性質(zhì)可得∠ABE=∠DBF,,可證△ABE∽△DBF,可得FD=AE.
(1)∵四邊形ABCD是正方形,
∴AB=AD,∠ABD=45°,∠A=90°,
∴BD=AB,
∵EF⊥AB,∠ABD=45°
∴∠EFB=45°=∠ABD,
∴EF=BE
∴BF=BE,
∵∠A=90°,EF⊥AB,
∴EF∥AD
∴
∴FD=AE
(2)FD=AE
理由如下:
∵旋轉
∴∠ABE=∠DBF,且
∴△ABE∽△DBF
∴
∴DF=AE
科目:初中數(shù)學 來源: 題型:
【題目】已知一個不透明的袋子中裝有7個只有顏色不同的球,其中2個白球,5個紅球.
(1)求從袋中隨機摸出一個球是紅球的概率.
(2)從袋中隨機摸出一個球,記錄顏色后放回,搖勻,再隨機摸出一個球,求兩次摸出的球恰好顏色不同的概率.
(3)若從袋中取出若干個紅球,換成相同數(shù)量的黃球.攪拌均勻后,使得隨機從袋中摸出兩個球,顏色是一白一黃的概率為,求袋中有幾個紅球被換成了黃球.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O為AC中點,若點D在直線BC上運動,連接OE,則在點D運動過程中,線段OE的最小值是為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:3.求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC交⊙O于E點,BC交⊙O于D點,CD=BD,∠C=70°.現(xiàn)給出以下四種結論:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2.其中正確結論的序號是( 。
A. ①② B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點A逆時針旋轉90°得到△ADE,BC的延長線交DE于F,連接BD,若BC=2EF,試證明△BED是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交與點M,交BC于點N,連接AN,過點C的切線交AB的延長線于點P.
(1)求證:∠BCP=∠BAN.
(2)若AC=4,PC=3,求MNBC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com