【題目】在△ABC中,AB⊥BC,AB = BC,E為BC上一點,連接AE,過點C作CF⊥AE,交AE的延長線于點F,連結(jié)BF,過點B作BG⊥BF交AE于G.
(1)求證:△ABG ≌ △CBF;
(2)若E為BC中點,求證:CF + EF = EG.
【答案】(1)見詳解(2)見詳解
【解析】
(1)證明∠BAG=∠BCF,∠ABG=∠CBF;即可解決問題.
(2)如圖,作輔助線;證明BH=CF,HE=EF;此為解決問題的關鍵性結(jié)論;證明GH=CF,即可解決問題.
解:(1)如圖,∵∠ABC=∠AFC=90°,
∴A、B、F、C四點共圓,
∴∠BAG=∠BCF;
∵AB⊥BC,BG⊥BF,
∴∠ABC=∠GBF,
∴∠ABG=∠CBF;
在△ABG與△CBF中,,
∴△ABG≌△CBF(ASA).
(2)
如圖,過點B作BH⊥AF;
∵CF⊥AE,
∴BH∥CF,△BHE∽△CFE,
∴BH:CF=GE:EF=BE:CE,
∵BE=CE,
∴BH=CF,HE=EF;
∵△ABG≌△CBF,
∴BG=BF,
∴GH=HF,
∴BH=GF=GH,
∴GH=CF,而GE=EF,
∴CF+EF=EG.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若點P從點A沿AB邊向B點以1 cm/s的速度移動,點Q從B點沿BC邊向點C以2 cm/s的速度移動,兩點同時出發(fā).
(1)問幾秒后,△PBQ的面積為8cm?
(2)出發(fā)幾秒后,線段PQ的長為4cm ?
(3)△PBQ的面積能否為10 cm2?若能,求出時間;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù),下列說法錯誤的是( )
A. 當x<1時,y隨x的增大而減小
B. 若圖象與x軸有交點,則
C. 當 a=3時,不等式 的解集是
D. 若將圖象向上平移1個單位,再向左平移3個單位后過點 ,則 a=3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中, AB =AC=24 cm, BC=16cm,AD= BD.如果點P在線段BC上以 2 cm/s 的速度由B點向C點運動,同時,點 Q在線段CA上以v cm/s 的速度由C點向A點運動,那么當△BPD 與△CQP全等時,v =( )
A.3B.4C.2或 4D.2或3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△ABC的位置如圖所示.
(1)分別寫出△ABC各個頂點的坐標;
(2)判斷△ABC的形狀;
(3)請在圖中畫出△ABC關于y軸對稱的圖形△A'B'C'.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)過幾秒,使△PBQ的面積等于8cm2?
(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,每個小正方形邊長都是1.
(1)按要求作圖: △ABC關于軸對稱的圖形△;
(2)將點先向上平移個單位,再向右平移個單位得到點的坐標為 ;
(3)△的面積為 ;
(4)若為軸上一點,連接 ,則△周長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com