18.如圖所示,在等腰△ABC中,AB=AC,AF為BC的中線,D為AF上的一點,且BD的垂直平分線過點C并交BD于E.
求證:△BCD是等邊三角形.

分析 根據(jù)等腰三角形的性質(zhì)得出AF⊥BC,根據(jù)線段垂直平分線性質(zhì)求出BD=DC,BC=CD,推出BD=DC=BC,根據(jù)等邊三角形的性質(zhì)得出即可.

解答 證明:∵AB=AC,AF為BC的中線,
∴AF⊥BC,
∴BD=DC,
∵CE是BD的垂直平分線,
∴BC=CD,
∴BD=DC=BC,
∴△BCD是等邊三角形.

點評 本題考查了等邊三角形的判定,等腰三角形的性質(zhì),線段垂直平分線性質(zhì)的應用,能正確運用定理進行推理是解此題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

17.若x、y為實數(shù),且滿足|x-$\sqrt{3}$|+$\sqrt{y+3}$=0,則($\frac{x}{y}$)3的值是-$\frac{\sqrt{3}}{9}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

18.x≠2時,分式$\frac{3}{2-x}$有意義;當x=-$\frac{9}{2}$時,分式$\frac{x-5}{2x+9}$無意義.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.如圖,在8×8的網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1),A、B、C均在小正方形的頂點上,請畫出三個以A、B、C、D為頂點的四邊形,每個四邊形的頂點D都在小正方形的頂點上,且每個四邊形的兩條對角線相等,三個四邊形的形狀不同.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

13.如圖,Rt△ABC中,∠A=90°,AB=6,AC=8,點E為邊AB上一點,AE=2,點F為線段AB上一點,且BF=3,過點E作AC的平行線交BC于點D,作直線FD交AC于點G,則FG=$\sqrt{265}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.如圖,在四邊形ABCD中,AB=AF,AE是∠BAF的角平分線.
(1)求證:△ABE≌△AFE;
(2)若AB∥DC,求證:∠AFD=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.如圖,正方形ABCD的對角線AC與BD相交于點O,E為BD上的一點,連接EA,將EA繞點E逆時針旋轉90°得線段EF,連接FB.
(1)如圖a,點E在OB上,
①求∠FEB+∠BAE的度數(shù);
②求證:ED-EB=$\sqrt{2}$BF;
(2)如圖b,當E在OD上時,按已知條件補全圖形,直接寫出ED、EB、BF三條線段的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.解下列方程:2x2-x=2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.解下列不等式組:
(1)$\left\{\begin{array}{l}{7(x-5)+2(x+1)>-15}\\{\frac{2x+1}{3}-\frac{3x-1}{2}<0}\end{array}\right.$           
(2)$\left\{\begin{array}{l}{x-3(x-2)<4}\\{\frac{1+2x}{3}>x-1}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案