【題目】在平面直角坐標系中,點A的坐標為(5,0),點C的坐標為(0,4),四邊形ABCO為矩形,點P為線段BC上的一動點,若△POA為等腰三角形,且點P在雙曲線y=上,則k值可以是_____.
【答案】10或12或8.
【解析】
當PA=PO時,根據(jù)P在OA的垂直平分線上,得到P的坐標;當OP=OA=5時,由勾股定理求出CP即可;當AP=AO=5時,同理求出BP、CP,即可得出P的坐標,然后把P的坐標代入線y=,即可求得k的值.
∵點A的坐標為(5,0),點C的坐標為(0,4),
∴當PA=PO時,P在OA的垂直平分線上,P的坐標是(2.5,4);
當OP=OA=5時,由勾股定理得:CP==3,P的坐標是(3,4);
當AP=AO=5時,同理BP=3,CP=5﹣3=2,P的坐標是(2,4).
∵點P在雙曲線y=上,
∴k=2.5×4=10或k=3×4=12或k=2×4=8,
故答案為10或12或8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,P是CB邊上一動點,連接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,設(shè)PC的長度為xcm,BQ的長度為ycm.
小青同學根據(jù)學習函數(shù)的經(jīng)驗對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小青同學的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y的幾組對應值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(說明:補全表格時,相關(guān)數(shù)據(jù)保留一位小數(shù))
m的值約為多少cm;
(2)在平面直角坐標系中,描出以補全后的表格中各組數(shù)值所對應的點(x,y),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①當y>2時,寫出對應的x的取值范圍;
②若點P不與B,C兩點重合,是否存在點P,使得BQ=BP?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+bx+c過點A(1,0),C(0,﹣3)
(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點P使△ABP的面積為10,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,AB=4,BC=5,CA=6.
(1)如果DE=10,那么當EF=________,FD=________時,△DEF∽△ABC;
(2)如果DE=10,那么當EF=________,FD=________時,△FDE∽△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形,點在上,將繞點順時針旋轉(zhuǎn)至,點,分別為點,旋轉(zhuǎn)后的對應點,連接,,,與交于點,與交于點.
(1)求證;
(2)直接寫出圖中已經(jīng)存在的所有等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某校初中各年級學生每天的平均睡眠時間(單位:h,精確到1h),抽樣調(diào)查了部分學生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計圖中百分數(shù)a的值為 ,所抽查的學生人數(shù)為 .
(2)求出平均睡眠時間為8小時的人數(shù),并補全頻數(shù)直方圖.
(3)求出這部分學生的平均睡眠時間的眾數(shù)和平均數(shù).
(4)如果該校共有學生1200名,請你估計睡眠不足(少于8小時)的學生數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,點E(4,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D、E,且tan∠BOA=.
(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x、y軸正半軸交于點H、G,求線段OG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數(shù)關(guān)系如圖所示(當4≤x≤10時,y與x成反比例).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關(guān)系式.
(2)問血液中藥物濃度不低于2微克/毫升的持續(xù)時間多少小時?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com