(2013•朝陽區(qū)二模)如圖,在⊙O中,直徑CD⊥弦AB于點E,點F在弧AC上,若∠BCD=32°,則∠AFD的度數(shù)為
32°
32°
分析:先根據(jù)垂徑定理得出
AD
=
BD
,再由圓周角定理即可得出結論.
解答:解:∵在⊙O中,直徑CD⊥弦AB于點E,
AD
=
BD
,
∵∠BCD=32°,
∴∠AFD=∠BCD=32°.
故答案為:32°.
點評:本題考查的是圓周角定理與垂徑定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)分解因式:2x3-4x2+2x=
2x(x-1)2
2x(x-1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)如圖,下列水平放置的幾何體中,左視圖不是長方形的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•朝陽區(qū)二模)閱讀下列材料:
小華遇到這樣一個問題,如圖1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC內部有一點P,連接PA、PB、PC,求PA+PB+PC的最小值.
小華是這樣思考的:要解決這個問題,首先應想辦法將這三條端點重合于一點的線段分離,然后再將它們連接成一條折線,并讓折線的兩個端點為定點,這樣依據(jù)“兩點之間,線段最短”,就可以求出這三條線段和的最小值了.他先后嘗試了翻折、旋轉、平移的方法,發(fā)現(xiàn)通過旋轉可以解決這個問題.他的做法是,如圖2,將△APC繞點C順時針旋轉60°,得到△EDC,連接PD、BE,則BE的長即為所求.
(1)請你寫出圖2中,PA+PB+PC的最小值為
61
61

(2)參考小華的思考問題的方法,解決下列問題:
①如圖3,菱形ABCD中,∠ABC=60°,在菱形ABCD內部有一點P,請在圖3中畫出并指明長度等于PA+PB+PC最小值的線段(保留畫圖痕跡,畫出一條即可);②若①中菱形ABCD的邊長為4,請直接寫出當PA+PB+PC值最小時PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)我國質檢總局規(guī)定,針織內衣等直接接觸皮膚的制品,每千克的衣物上甲醛含量應在0.000075千克以下.將0.000075用科學記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)從分別標有1到9數(shù)字的9張卡片中任意抽取一張,抽到所標數(shù)字是3的倍數(shù)的概率為( 。

查看答案和解析>>

同步練習冊答案