【題目】若整式x2+ky2(k為不等于零的常數(shù))能在有理數(shù)范圍內(nèi)因式分解,則k的值可以是(寫(xiě)出一個(gè)即可).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有資料表明,一粒廢舊的紐扣電池大約會(huì)污染60萬(wàn)升水.某校七年級(jí)(1)班有50名學(xué)生,若每名學(xué)生都丟棄一粒紐扣電池,污染的水大約為( )
A. 3x103萬(wàn)升 B. 3×102萬(wàn)升 C. 6x105萬(wàn)升 D. 3×107萬(wàn)升
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn).過(guò)點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:△CAN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,把直線y=2x向下平移3個(gè)單位,所得直線的解析式__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠CAB=90°,AC=AB=6,D,E分別是AB,AC的中點(diǎn),若等腰Rt△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到Rt△AD1E1,設(shè)旋轉(zhuǎn)角為α(0<α≤180°),記直線BD1與CE1的交點(diǎn)為P.
(1)如圖1,當(dāng)α=90°時(shí),線段BD1的長(zhǎng)等于 ,線段CE1的長(zhǎng)等于 ;
(2)如圖2,當(dāng)α=135°時(shí),設(shè)直線BD1與CA的交點(diǎn)為F,求證:BD1=CE1,且BD1⊥CE1;
(3)點(diǎn)P到AB所在直線的距離的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=2x2向左平移一個(gè)單位,再向下平移2個(gè)單位,就得到拋物線( )
A. y=2(x-1)2-2B. y=2(x-1)2+2C. y=2(x+1)2+2D. y=2(x+1)2-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a+b<0,ab<0,則下列說(shuō)法正確的是( )
A.a、b同號(hào)
B.a、b異號(hào)且負(fù)數(shù)的絕對(duì)值較大
C.a、b異號(hào)且正數(shù)的絕對(duì)值較大
D.以上均有可能
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com