【題目】閱讀理解:
如圖①,在平面直角坐標(biāo)系中,若已知點(diǎn)A(xA,yA)和點(diǎn)C(xC,yC),點(diǎn)M為線段AC的中點(diǎn),利用三角形全等的知識(shí),有△AMP≌△CMQ,則有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,從而有,即中點(diǎn)M的坐標(biāo)為(,).
基本知識(shí):
(1)如圖①,若A、C點(diǎn)的坐標(biāo)分別A(﹣1,3)、C(3,﹣1),求AC中點(diǎn)M的坐標(biāo);
方法提煉:
(2)如圖②,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,5)、(﹣2,2)、(3,3),求點(diǎn)D的坐標(biāo);
(3)如圖③,點(diǎn)A是反比例函數(shù)y=(x>0)上的動(dòng)點(diǎn),過點(diǎn)A作AB∥x軸,AC∥y軸,分別交函數(shù)y═(x>0)的圖象于點(diǎn)B、C,點(diǎn)D是直線y=2x上的動(dòng)點(diǎn),請(qǐng)?zhí)剿髟邳c(diǎn)A運(yùn)動(dòng)過程中,以A、B、C、D為頂點(diǎn)的四邊形能否為平行四邊形,若能,求出此時(shí)點(diǎn)A的坐標(biāo);若不能,請(qǐng)說明理由.
【答案】(1)(1,1);(2)(4,6);(3)點(diǎn)A的坐標(biāo)為(2,),(,4),(2,4)
【解析】
(1)根據(jù)線段的中點(diǎn)坐標(biāo)公式,可得答案;
(2)根據(jù)平行四邊形的對(duì)角線互相平分,可得M是AC的中點(diǎn),M是BD的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式,可得答案.
(3)根據(jù)平行四邊形對(duì)角的頂點(diǎn)的橫坐標(biāo)的和相等,縱坐標(biāo)的和相等,可得點(diǎn)D的坐標(biāo),根據(jù)點(diǎn)在函數(shù)圖象上,可得a的值,根據(jù)點(diǎn)A的坐標(biāo)是(a,),可得點(diǎn)A的坐標(biāo).
(1)將A,C點(diǎn)的坐標(biāo)代入中點(diǎn)坐標(biāo)公式,得
xM==1,yM==1,
AC中點(diǎn)M的坐標(biāo)(1,1);
(2)連接AC,BD交于點(diǎn)M∵四邊形ABCD是平行四邊形,
∴M是AC與BD的交點(diǎn),
將A(﹣1,5),C(3,3)代入,
解得,
即點(diǎn)M的坐標(biāo)為(1,4),
設(shè)點(diǎn)D的坐標(biāo)為(xD,yD),
由中點(diǎn)坐標(biāo)公式,得
,
解得,
即點(diǎn)D的坐標(biāo)為(4,6);
(3)設(shè)A(a,),則B(,)C(a,),
①當(dāng)AB為對(duì)角線時(shí),有,
即,
解得,
將D(,)代入y=2x解得a=2,
A(2,),
②當(dāng)AC為對(duì)角線時(shí),有,
即
解得
將D(a,)代入y=2x解得a=,
A(,4);
③當(dāng)AD為對(duì)角線時(shí),有
即,
解得
將D(,)代入y=2x解得a=2,
A(2,4),
綜上所述:點(diǎn)A的坐標(biāo)為(2,),(,4),(2,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天,一蔬菜經(jīng)營(yíng)戶用114元從蔬菜批發(fā)市場(chǎng)購(gòu)進(jìn)黃瓜和土豆共40kg到菜市場(chǎng)去賣,黃瓜和土豆這天的批發(fā)價(jià)和零售價(jià)(單位:元/kg)如下表所示:
(1)他當(dāng)天購(gòu)進(jìn)黃瓜和土豆各多少千克?
(2)如果黃瓜和土豆全部賣完,他能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種水彩筆,在購(gòu)買時(shí),若同時(shí)額外購(gòu)買筆芯,每個(gè)優(yōu)惠價(jià)為3元,使用期間,若備用筆芯不足時(shí)需另外購(gòu)買,每個(gè)5元.現(xiàn)要對(duì)在購(gòu)買水彩筆時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)筆芯作出選擇,為此收集了這種水彩筆在使用期內(nèi)需要更換筆芯個(gè)數(shù)的30組數(shù)據(jù),整理繪制出下面的條形統(tǒng)計(jì)圖:
設(shè)x表示水彩筆在使用期內(nèi)需要更換的筆芯個(gè)數(shù),y表示每支水彩筆在購(gòu)買筆芯上所需要的費(fèi)用(單位:元),n表示購(gòu)買水彩筆的同時(shí)購(gòu)買的筆芯個(gè)數(shù).
(1)若n=9,求y與x的函數(shù)關(guān)系式;
(2)若要使這30支水彩筆“更換筆芯的個(gè)數(shù)不大于同時(shí)購(gòu)買筆芯的個(gè)數(shù)”的頻率不小于0.5,確定n的最小值;
(3)假設(shè)這30支筆在購(gòu)買時(shí),每支筆同時(shí)購(gòu)買9個(gè)筆芯,或每支筆同時(shí)購(gòu)買10個(gè)筆芯,分別計(jì)算這30支筆在購(gòu)買筆芯所需費(fèi)用的平均數(shù),以費(fèi)用最省作為選擇依據(jù),判斷購(gòu)買一支水彩筆的同時(shí)應(yīng)購(gòu)買9個(gè)還是10個(gè)筆芯.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司在某市五個(gè)區(qū)投放共享單車供市民使用,投放量的分布及投放后的使用情況統(tǒng)計(jì)如下.
(1)該公司在全市一共投放了 萬(wàn)輛共享單車;
(2)在扇形統(tǒng)計(jì)圖中,B區(qū)所對(duì)應(yīng)扇形的圓心角為 °;
(3)該公司在全市投放的共享單車的使用量占投放量的85%,請(qǐng)計(jì)算C區(qū)共享單車的使用量并補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.
(1)求證:此方程總有兩個(gè)實(shí)數(shù)根;
(2)若此方程有一個(gè)根大于0且小于1,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知原點(diǎn)O,A(0,4),B(2,0),將△OAB繞平面內(nèi)一點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°,使得旋轉(zhuǎn)后的三角形的兩個(gè)頂點(diǎn)恰好落在雙曲線 上,則旋轉(zhuǎn)中心P的坐標(biāo)為。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,將腰CD以點(diǎn)D為中心逆時(shí)針旋轉(zhuǎn)90°至ED,連結(jié)AE,CE,則△ADE的面積是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過反比例函數(shù)y= (x>0)的圖像上一點(diǎn)A作AB⊥x軸于點(diǎn)B,連接AO,若S△AOB=2,則k的值為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com