(2010•常州)如圖,AB是⊙O的直徑,弦DC與AB相交于點(diǎn)E,若∠ACD=60°,∠ADC=50°,則∠ABD=    度,∠CEB=    度.
【答案】分析:(1)欲求∠ABD,已知了同弧所對(duì)的圓周角∠ACB的度數(shù),根據(jù)同弧所對(duì)的圓周角相等即可得解;
(2)由于∠CEB是△ACE的外角,已知∠ACD的度數(shù),欲求∠CEB,需先求出∠CAB的度數(shù);可連接BC,由圓周角定理知∠ACB是直角,則∠A和∠CBA(即∠ADC)互余,由此得解.
解答:解:(1)∵∠ABD、∠ACD是同弧所對(duì)的圓周角,
∴∠ABD=∠ACD=60°;

(2)連接BC,則∠ACB=90°;
∵∠CBA=∠ADC=50°,
∴∠CAB=90°-∠CBA=40°;
∴∠CEB=∠CAB+∠ACD=60°+40°=100°.
點(diǎn)評(píng):此題主要考查的是圓周角定理及三角形的外角性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《概率》(08)(解析版) 題型:解答題

(2010•常州)如圖所示,小吳和小黃在玩轉(zhuǎn)盤游戲時(shí),準(zhǔn)備了兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤甲、乙,內(nèi)閣轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形區(qū)域,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字,游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)后,指針?biāo)干刃螀^(qū)域內(nèi)的數(shù)字之和為4,5或6時(shí),則小吳勝否則小黃勝.(如果指針恰好在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一扇形區(qū)域?yàn)橹梗?br />(1)這個(gè)游戲規(guī)則對(duì)雙方公平嗎?說說你的理由;
(2)請(qǐng)你設(shè)計(jì)一個(gè)對(duì)雙方都公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省常州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•常州)如圖所示,幾何體的主(正)視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省中山市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•常州)如圖所示,幾何體的主(正)視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•常州)如圖所示,幾何體的主(正)視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省汕頭市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•常州)如圖所示,幾何體的主(正)視圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案