【題目】如圖,為了測(cè)量山的高度,先在山腳的一點(diǎn)測(cè)得山頂的仰角為,再沿坡角為的山坡走米到點(diǎn),又測(cè)得山頂的仰角是,則山高________.(帶根號(hào))

【答案】

【解析】

延長(zhǎng)ADCB于點(diǎn)G,過(guò)點(diǎn)DDMAC于點(diǎn)M,先求出∠CAG=30°,ACD=30°,得出AM=CM,在RtCDM中,根據(jù)cosDCM=,求出CM,得出AC=2CM=100,在RtABC中,根據(jù)AB=sinACBAC,代入計(jì)算即可.

延長(zhǎng)ADCB于點(diǎn)G,過(guò)點(diǎn)DDMAC于點(diǎn)M,

則∠AGB=75°,

∵∠ACB=45°,

∴∠CAG=30°,

∵∠DCG=15°

∴∠ACD=30°,

AD=CD,

AM=CM,

RtCDM中,

cosDCM=,

CM=cosDCMCD=cos30°×100=50

AC=100,

RtABC中,

sinACB=

AB=sinACBAC=sin45°×100=×100=50

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtADE中,DAE=90°,C是邊AE上任意一點(diǎn)(點(diǎn)C與點(diǎn)A、E不重合),以AC為一直角邊在RtADE的外部作Rt△ABC,∠BAC=90°,連接BE、CD.

(1)在圖1中,若AC=AB,AE=AD,現(xiàn)將圖1中的RtADE繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)銳角α,得到圖2,那么線段BE.CD之間有怎樣的關(guān)系,寫(xiě)出結(jié)論,并說(shuō)明理由;

(2)在圖1中,若CA=3,AB=5,AE=10,AD=6,將圖1中的RtADE繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)銳角α,得到圖3,連接BD、CE.

求證:△ABE∽△ACD;

計(jì)算:BD2+CE2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫(huà)有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻.

(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對(duì)稱圖形的概率;

(2)小明和小亮約定做一個(gè)游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對(duì)稱圖形小明獲勝,否則小亮獲勝,這個(gè)游戲公平嗎?請(qǐng)用列表法(或樹(shù)狀圖)說(shuō)明理由(紙牌用表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:綜合實(shí)踐活動(dòng)課上,同學(xué)們圍繞“已知三角形三邊的長(zhǎng)度,求三角形的面積”開(kāi)展活動(dòng),啟航小組同學(xué)想到借助正方形網(wǎng)格解決問(wèn)題

問(wèn)題解決:圖(1)、圖(2)都是6×6的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),操作發(fā)現(xiàn),啟航小組同學(xué)在圖(1)中畫(huà)出△ABC,其頂點(diǎn)A,B,C都在格點(diǎn)上,同時(shí)構(gòu)造長(zhǎng)方形CDEF,使它的頂點(diǎn)都在格點(diǎn)上,且它的邊EF經(jīng)過(guò)點(diǎn)A,ED經(jīng)過(guò)點(diǎn)B.同學(xué)們借助此圖求出了△ABC的面積.

1)在圖(1)中,△ABC的三邊長(zhǎng)分別是AB   ,BC   ,AC   .△ABC的面積是   

2)已知△PMN中,PMMN2,NP.請(qǐng)你根據(jù)啟航小組的思路,在圖(2)中畫(huà)出△PMN,并直接寫(xiě)出△RMN的面積   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A11),B3,3),動(dòng)點(diǎn)Cx軸上,若以AB、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,則點(diǎn)C的個(gè)數(shù)為(。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,在 RtABC 中,∠ACB90°,ACBC,D BC 上的一點(diǎn),過(guò)點(diǎn) D DEAB,垂足為點(diǎn) E,F AD 的中點(diǎn),連接 CF、EF

1)猜想CFEF的關(guān)系,并說(shuō)明理由;

2)如圖2,連接BF,若∠AEF30°,求∠BFE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,、分別為線段上的兩個(gè)動(dòng)點(diǎn),且,若,,于點(diǎn).

1)求證:,;

2)當(dāng),兩點(diǎn)移動(dòng)到如圖②的位置時(shí),其余條件不變,上述結(jié)論能否成立?若成立請(qǐng)給予證明;若不成立請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題:如圖1,在RtABC中,∠BAC90°,ABAC,DBC邊上一點(diǎn)(不與點(diǎn)B,C重合)將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC.求證:ABD≌△ACE

(2)探索:如圖2,在RtABCRtADE中,∠BAC=∠DAE90°,ABACADAE,將ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段BD2CD2DE2之間滿足的等量關(guān)系,并證明你的結(jié)論;

(3)應(yīng)用:如圖3,在四邊形ABCD中,∠ABC=∠ACB=∠ADC45°,若BD6,CD2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是將一正方體貨物沿坡面AB裝進(jìn)汽車貨廂的平面示意圖.已知長(zhǎng)方體貨廂的高度BC為米,tanA=.現(xiàn)把圖中的貨物繼續(xù)往前平移,當(dāng)貨物頂點(diǎn)D與C重合時(shí),仍可把貨物放平裝進(jìn)貨廂,求BD的長(zhǎng).(結(jié)果保留根號(hào)

查看答案和解析>>

同步練習(xí)冊(cè)答案