【題目】如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( 。

A. B. C. 1 D. 2

【答案】B

【解析】

A關(guān)于MN的對(duì)稱點(diǎn)Q,連接MQ,然后根據(jù)圓周角定理、圓的對(duì)稱性質(zhì)和勾股定理解答即可

A關(guān)于MN的對(duì)稱點(diǎn)Q,連接MQ,BQ,BQMNP,此時(shí)AP+PB=QP+PB=QB,

根據(jù)兩點(diǎn)之間線段最短,PA+PB的最小值為QB的長(zhǎng)度,

連接AO,OB,OQ,

B中點(diǎn),

∴∠BON=AMN=30°,

∴∠QON=2QMN=2×30°=60°,

∴∠BOQ=30°+60°=90°.

∵直徑MN=2,

OB=1,

BQ==

PA+PB的最小值為

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰 RtABC 中,∠ACB=90°,P 是射線CB上一點(diǎn)(B點(diǎn)右側(cè)),連接AP,延長(zhǎng)PC至點(diǎn)Q,使得 CQ=CP,過(guò)點(diǎn)QQHAPPA延長(zhǎng)線于點(diǎn)H,交BA延長(zhǎng)線于點(diǎn)M,用等式表示線段MBPQ之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O為坐標(biāo)原點(diǎn),四邊形OABC為長(zhǎng)方形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng).

(1)當(dāng)△ODP是等腰三角形時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo);

(2)求△ODP周長(zhǎng)的最小值.(要有適當(dāng)?shù)膱D形和說(shuō)明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在ABC中,∠ACB=90°,點(diǎn)P是線段AC上一點(diǎn),過(guò)點(diǎn)AAB的垂線,交BP的延長(zhǎng)線于點(diǎn)M,MNAC于點(diǎn)N,PQAB于點(diǎn)QAQ=MN 求證:

1APM是等腰三角形;

2PC=AN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABACDE是邊AB的垂直平分線,交ABE、交ACD,連接BD.

(1)若∠A40°,求∠DBC的度數(shù).

(2)若△BCD的周長(zhǎng)為16cm,△ABC的周長(zhǎng)為26cm,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,A=60°,點(diǎn)E,F(xiàn)分別在AB,AC上,把∠A沿著EF對(duì)折,使點(diǎn)A落在BC上的點(diǎn)D處.

(1)用尺規(guī)作圖的方法,在圖中找出點(diǎn)E,F(xiàn)的位置,并連接DE,DF(保留作圖痕跡,不要求寫作法);

(2)若EDBC,求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(4,0),以點(diǎn)A為圓心,4為半徑的圓與x軸交于O,B兩點(diǎn),OC為弦,∠AOC=60°,Px軸上的一動(dòng)點(diǎn),連接CP.

(1)直接寫出OC=___________;

(2)如圖1,當(dāng)CP與⊙A相切時(shí),求PO的長(zhǎng);

(3)如圖2,當(dāng)點(diǎn)P在直徑OB上時(shí),CP的延長(zhǎng)線與⊙A相交于點(diǎn)Q,問(wèn)當(dāng)PO為何值時(shí),△OCQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,對(duì)角線AC,BD交于點(diǎn)E,點(diǎn)O在線段AE上,⊙O過(guò)B,D兩點(diǎn),若OC=5,OB=3,且cos∠BOE=.求證:CB⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,D、E分別是△ABC的邊BC、AC上的點(diǎn),且AB=AC,AD=AE.

(1)若∠BAD=20°,則∠EDC= °.

(2)若∠EDC=20°,則∠BAD= °.

(3)設(shè)∠BAD=α,EDC=β,你能由(1)(2)中的結(jié)果找到α、β間所滿足的關(guān)系嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案