【題目】如圖,點B是線段AC上一點,AC=4AB,AB=6cm,直線MN經(jīng)過線段BC的中點P.
(1)圖中共有線段______條,圖中共有射線______條.
(2)圖中有______組對頂角,與∠MPC互補的角是______.
(3)線段AP的長度是______.
【答案】(1)6,2;(2)2,∠APM和∠CPN;(3)15cm
【解析】
(1)根據(jù)題意即可得到結(jié)論;
(2)根據(jù)對頂角和補角的定義即可得到結(jié)論;
(3)根據(jù)已知條件得到BC=3AB=18cm,根據(jù)線段中點的定義得到PBBC=9cm,于是得到結(jié)論.
(1)圖中共有線段6條,圖中共有射線2條.
(2)圖中有2組對頂角,與∠MPC互補的角是∠APM和∠CPN.
(3)∵AC=4AB,AB=6cm,∴BC=3AB=18cm.
∵P是線段BC的中點,∴PBBC=9cm,∴AP=AB+PB=6+9=15(cm),∴線段AP的長度是15cm.
故答案為:6,2,2,∠APM和∠CPN,15cm.
科目:初中數(shù)學 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長和是( )
A. 4nB. 4mC. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O在直線MN上,∠AOB=90°,OC平分∠MOB.
(1)若∠AOC=則∠BOC=_______,∠AOM=_______,∠BON=_________;
(2)若∠AOC=則∠BON=_______(用含有的式子表示);
(3)將∠AOB繞著點O順時針轉(zhuǎn)到圖2的位置,其他條件不變,若∠AOC=(為鈍角),求∠BON的度數(shù)(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,現(xiàn)有5張寫著不同數(shù)字的卡片,請按要求完成下列問題:
若從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,則乘積的最大值是______.
若從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是______.
若從中取出4張卡片,請運用所學的計算方法,寫出兩個不同的運算式,使四個數(shù)字的計算結(jié)果為24.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:,OB、OC、OM、ON是內(nèi)的射線.
如圖1,若OM平分,ON平分當OB繞點O在內(nèi)旋轉(zhuǎn)時,則的大小為______;
如圖2,若,OM平分,ON平分當繞點O在內(nèi)旋轉(zhuǎn)時,求的大;
在的條件下,若,當在內(nèi)繞著點O以秒的速度逆時針旋轉(zhuǎn)t秒時,和中的一個角的度數(shù)恰好是另一個角的度數(shù)的兩倍,求t的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BF是⊙O的直徑,A為⊙O上(異于B、F)一點,⊙O的切線MA與FB的延長線交于點M;P為AM上一點,PB的延長線交⊙O于點C,D為BC上一點且PA=PD,AD的延長線交⊙O于點E.
(1)求證: = ;
(2)若ED、EA的長是一元二次方程x2﹣5x+5=0的兩根,求BE的長;
(3)若MA=6 ,sin∠AMF= ,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點,與雙曲線y= 交于E,F(xiàn)兩點,若AB=2EF,則k的值是( )
A.﹣1
B.1
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知AB是圓O的直徑,圓O過BC的中點D,且DE⊥AC.
(1)求證:DE是圓O的切線;
(2)若∠C=30°,CD=10cm,求圓O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com