如圖,在直角坐標(biāo)系中放入一個(gè)矩形紙片OABC,將矩形紙片OABC翻折后,使點(diǎn)B恰好落在x軸上,記為D,折痕為CE,且OA=15,sin∠EDA=

1.求D點(diǎn)的坐標(biāo);

2.求折痕CE所在直線的解析式.

 

【答案】

 

1.由折疊性質(zhì)得:△BCE≌△DCE

∴CD=CB=OA=15  ∠CDE=∠B=90°            ……………2分

∵∠CDA=∠CDE+∠EDA   ∠COA=90°

∴∠EDA=∠OCD

∴sin∠OCD= sin∠EDA=

∴OD=CD·sin∠OCD=15×=12                ……………4分

∴D點(diǎn)的坐標(biāo)為(12,0)                          ……………5分

2.在直角△OCD中,由勾股定理得:OC

∴AB=9                                  ……………6分

∵AD= OA- OD=15-12=3  ∴設(shè)AE=,則DE=BE=

   ∴……………8分

 ∴AE=4  OC=9

∴E、C點(diǎn)的坐標(biāo)分別是(15,4) , (0,9) ……………9分

設(shè)CE所在直線的解析式為

   ∴                 ……………11分

∴CE所在直線的解析式為          ……………12分

【解析】(1)圖形折疊問(wèn)題,首先要分析那些線段相等、哪些角相等,求得線段OD的長(zhǎng),即可知點(diǎn)D的坐標(biāo);

(2)求一次函數(shù)解析式,關(guān)鍵是求出該直線上兩個(gè)點(diǎn)的坐標(biāo),代入求值。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過(guò)第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過(guò)點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案