分析 先根據(jù)CD=10cm求出OC的長(zhǎng),故可得出OM的長(zhǎng),連接OA,由垂徑定理可得出AM=$\frac{1}{2}$AB,在Rt△AOM中,利用勾股定理即可求出AM的長(zhǎng),進(jìn)而可得出AB的長(zhǎng).
解答 解:∵⊙O的直徑CD=10,
∴OA=OC=5,
∵OM:MC=3:2,
∴CM=2,
∴OM=OC-CM=3,
連接OA,
∵AB⊥CD,
∴AM=$\frac{1}{2}$AB,
在Rt△AOM中,
∵OA=5,OM=3,
∴AM=$\sqrt{O{A}^{2}-O{M}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∴AB=2AM=8.
故答案為:8.
點(diǎn)評(píng) 本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | an(1-a3+a2) | B. | an(-a2n+a2) | C. | an(1-a2n+a2) | D. | an(-a3+an) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com