【題目】有下列說法:
(1)無理數(shù)就是開方開不盡的數(shù);(2)無理數(shù)包括正無理數(shù)、零、負無理數(shù);
(3)無理數(shù)是無限不循環(huán)小數(shù);(4)無理數(shù)都可以用數(shù)軸上的點來表示.
其中正確的說法的個數(shù)是( )
A.1B.2C.3D.4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC.
(1)分別畫出與△ABC關(guān)于x軸、y軸對稱的圖形△A1B1C1和△A2B2C2;
(2)寫出△A1B1C1和△A2B2C2各頂點的坐標;
(3)直接寫出△ABC的面積,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB邊上一動點,PD⊥AC于點D,點E在P的右側(cè),且PE=1,連結(jié)CE.P從點A出發(fā),沿AB方向運動,當(dāng)E到達點B時,P停止運動.在整個運動過程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,下面四個結(jié)論正確的有________________.
①BP=CM;②△ABQ≌△CAP;③∠CMQ的度數(shù)不變,始終等于60°;④當(dāng)?shù)?/span>秒或第秒時,△PBQ為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖表.
甲校成績統(tǒng)計表
分數(shù) | 7分 | 8分 | 9分 | 10分 |
人數(shù) | 11 | 0 | 8 |
(1)在圖1中,“7分”所在扇形的圓心角等于 °.
(2)請你將圖2的統(tǒng)計圖補充完整;
(3)經(jīng)計算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個學(xué)校成績較好.
(4)如果該教育局要組織8人的代表隊參加市級團體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請你分析,應(yīng)選哪所學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)的圖象與坐標軸圍成的三角形,叫做此一次函數(shù)的坐標三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點A,B,則△OAB為此函數(shù)的坐標三角形.
(1)求函數(shù)y=x+3的坐標三角形的三條邊長;
(2)若函數(shù)y=x+b(b為常數(shù))的坐標三角形周長為16,求此三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀資料:小明是一個愛動腦筋的好學(xué)生,他在學(xué)習(xí)了有關(guān)圓的切線性質(zhì)后,意猶未盡,又查閱到了與圓的切線相關(guān)的一個問題:
如圖1,已知PC是⊙O的切線,AB是⊙O的直徑,延長BA交切線PC與P,連接AC、BC、OC.
因為PC是⊙O的切線,AB是⊙O的直徑,所以∠OCP=∠ACB=90°,所以∠1=∠2.
又因為∠B=∠1,所以∠B=∠2.
在△PAC與△PCB中,又因為:∠P=∠P,所以△PAC∽△PCB,所以,即PC2=PAPB.
問題拓展:
(Ⅰ)如果PB不經(jīng)過⊙O的圓心O(如圖2)等式PC2=PAPB,還成立嗎?請證明你的結(jié)論;
綜合應(yīng)用:
(Ⅱ)如圖3,⊙O是△ABC的外接圓,PC是⊙O的切線,C是切點,BA的延長線交PC于點P;
(1)當(dāng)AB=PA,且PC=12時,求PA的值;
(2)D是BC的中點,PD交AC于點E.求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com