(2008•南昌)在平面直角坐標(biāo)系中,以點(diǎn)(2,3)為圓心,2為半徑的圓必定( )
A.與x軸相離,與y軸相切
B.與x軸,y軸都相離
C.與x軸相切,與y軸相離
D.與x軸,y軸都相切
【答案】分析:本題應(yīng)將該點(diǎn)的橫縱坐標(biāo)分別與半徑對(duì)比,大于半徑的相離,等于半徑的相切.
解答:解:∵是以點(diǎn)(2,3)為圓心,2為半徑的圓,
如圖所示:
∴這個(gè)圓與y軸相切,與x軸相離.
故選A.
點(diǎn)評(píng):直線與圓相切,直線到圓的距離等于半徑;與圓相離,直線到圓的距離大于半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省無(wú)錫市天一實(shí)驗(yàn)學(xué)校中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2008•南昌)如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-,),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(01)(解析版) 題型:選擇題

(2008•南昌)在平面直角坐標(biāo)系中,以點(diǎn)(2,3)為圓心,2為半徑的圓必定( )
A.與x軸相離,與y軸相切
B.與x軸,y軸都相離
C.與x軸相切,與y軸相離
D.與x軸,y軸都相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省南通市通州區(qū)通西片一模試卷(解析版) 題型:選擇題

(2008•南昌)在平面直角坐標(biāo)系中,以點(diǎn)(2,3)為圓心,2為半徑的圓必定( )
A.與x軸相離,與y軸相切
B.與x軸,y軸都相離
C.與x軸相切,與y軸相離
D.與x軸,y軸都相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•南昌)在平面直角坐標(biāo)系中,以點(diǎn)(2,3)為圓心,2為半徑的圓必定( )
A.與x軸相離,與y軸相切
B.與x軸,y軸都相離
C.與x軸相切,與y軸相離
D.與x軸,y軸都相切

查看答案和解析>>

同步練習(xí)冊(cè)答案