如圖,在Rt△ABC中,∠ACB=90°,點D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).
考點:全等三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì)
專題:幾何綜合題
分析:(1)由旋轉(zhuǎn)的性質(zhì)可得:CD=CE,再根據(jù)同角的余角相等可證明∠BCD=∠FCE,再根據(jù)全等三角形的判定方法即可證明△BCD≌△FCE;
(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,進(jìn)而可求出∠BDC的度數(shù).
解答:(1)證明:∵將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,
∴CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠BCD=90°-∠ACD=∠FCE,
在△BCD和△FCE中,
CB=CF
∠BCD=∠FCE
CD=CE
,
∴△BCD≌△FCE(SAS).

(2)解:由(1)可知△BCD≌△FCE,
∴∠BDC=∠E,∠BCD=∠FCE,
∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,
∵EF∥CD,
∴∠E=180°-∠DCE=90°,
∴∠BDC=90°.
點評:本題考查了全等三角形的判定和性質(zhì)、同角的余角相等、旋轉(zhuǎn)的性質(zhì)、平行線的性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若一個圓錐的軸截面是一個腰長為6cm,底邊長為2cm的等腰三角形,則這個圓錐的表面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知圓柱的底面半徑為3cm,母線長為5cm,則圓柱的側(cè)面積是( 。
A、30cm2
B、30πcm2
C、15cm2
D、15πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知函數(shù)y=-
1
2
x+b的圖象與x軸、y軸分別交于點A、B,與函數(shù)y=x的圖象交于點M,點M的橫坐標(biāo)為2,在x軸上有一點P(a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)y=-
1
2
x+b和y=x的圖象于點C、D.
(1)求點A的坐標(biāo);
(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某學(xué)習(xí)小組由3名男生和1名女生組成,在一次合作學(xué)習(xí)后,開始進(jìn)行成果展示.
(1)如果隨機(jī)抽取1名同學(xué)單獨展示,那么女生展示的概率為
 

(2)如果隨機(jī)抽取2名同學(xué)共同展示,求同為男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=2x+a與直線y=-x+b都經(jīng)過點A(-3,0),并且直線y=2x+a與y軸交于點B,直線y=-x+b與y軸交于點C,請你在同一直線坐標(biāo)系中畫出這兩條直線并求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校計劃開設(shè)4門選修課:音樂、繪畫、體育、舞蹈,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門),對調(diào)查結(jié)果進(jìn)行統(tǒng)計后,繪制了如下不完整的兩個統(tǒng)計圖.

根據(jù)以上統(tǒng)計圖提供的信息,回答下列問題:
(1)此次調(diào)查抽取的學(xué)生人數(shù)為a=
 
人,其中選擇“繪畫”的學(xué)生人數(shù)占抽樣人數(shù)的百分比為b=
 
;
(2)補全條形統(tǒng)計圖;
(3)若該校有2000名學(xué)生,請估計全校選擇“繪畫”的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)y=2kx2-(4k+1)x-k+1(k是實數(shù)).
教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.
學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動一員,又補充一些結(jié)論,并從中選出以下四條:
①存在函數(shù),其圖象經(jīng)過(1,0)點;
②函數(shù)圖象與坐標(biāo)軸總有三個不同的交點;
③當(dāng)x>1時,不是y隨x的增大而增大就是y隨x的增大而減;
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù).
教師:請你分別判斷四條結(jié)論的真假,并給出理由.最后簡單寫出解決問題時所用的數(shù)學(xué)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,點E在AC上,且
AE
EC
=
1
2
,F(xiàn)為BE中點,AF的延長線交BC于D,求證:
BD
DC
=
1
3

查看答案和解析>>

同步練習(xí)冊答案