【題目】如圖,在△ABC中,AC=21,BC=13,DAC邊上一點(diǎn),BD=12,AD=16,

(1)E是邊AB的中點(diǎn),求線段DE的長(zhǎng)

(2)E是邊AB上的動(dòng)點(diǎn),求線段DE的最小值.

【答案】(1)10;(2)

【解析】

(1)在△BCD中,由勾股定理逆定理可得△BCD是直角三角形,即∠ADB=90°,直角三角形斜邊上的中線等于斜邊的一半可解得線段DE的長(zhǎng);

(2) 當(dāng)DE⊥AB時(shí),DE有最小值.根據(jù)等面積法即可求出DE的長(zhǎng).

解:(1)∵AC21,AD16

∴CD=21-16=5,

∵DC +BD =5 +12 =169,BC =13 =169,

∴DC +BD = BC ,

∴△BCD是直角三角形。且∠BDC=90°,

∴∠ADB=90°,

在Rt△ADB中,由勾股定理得AB==20,

∵∠ADB=90°,E為斜邊AB的中點(diǎn),

∴DE=AB=×20=10.

(2)當(dāng)DE⊥AB時(shí),DE有最小值.

此時(shí)AB×DE=AD×DB,即20DE=16×12,

解得DE=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式的值

(1) (2)

(3) (4)

(5)+ (6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班畢業(yè)聯(lián)歡會(huì)設(shè)計(jì)的即興表演節(jié)目的摸球游戲,游戲采用一個(gè)不透明的盒子,里面裝有五個(gè)分別標(biāo)有數(shù)字1、2、3、4、5的乒乓球,這些球除數(shù)字外,其它完全相同,游戲規(guī)則是參加聯(lián)歡會(huì)的50名同學(xué),每人將盒子乒乓球搖勻后閉上眼睛從中隨機(jī)一次摸出兩個(gè)球(每位同學(xué)必須且只能摸一次).若兩球上的數(shù)字之和是偶數(shù)就給大家即興表演一個(gè)節(jié)目;否則,下個(gè)同學(xué)接著做摸球游戲,依次進(jìn)行.

(1)用列表法或畫樹狀圖法求參加聯(lián)歡會(huì)同學(xué)表演即興節(jié)目的概率;

(2)估計(jì)本次聯(lián)歡會(huì)上有多少個(gè)同學(xué)表演即興節(jié)目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了了解初中生對(duì)安全知識(shí)掌握情況,抽取了50名初中生進(jìn)行安全知識(shí)測(cè)試,并將測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制成了頻數(shù)分布表和頻數(shù)分布直方圖(未完成). 安全知識(shí)測(cè)試成績(jī)頻數(shù)分布表

組別

成績(jī)x(分?jǐn)?shù))

組中值

頻數(shù)(人數(shù))

1

90≤x<100

95

10

2

80≤x<90

85

25

3

70≤x<80

75

12

4

60≤x<70

65

3


(1)完成頻數(shù)分布直方圖;
(2)這個(gè)樣本數(shù)據(jù)的中位數(shù)在第組;
(3)若將各組的組中值視為該組的平均成績(jī),則此次測(cè)試的平均成績(jī)?yōu)?/span>;
(4)若將90分以上(含90分)定為“優(yōu)秀”等級(jí),則該縣10000名初中生中,獲“優(yōu)秀”等級(jí)的學(xué)生約為人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,OM=3,ON=7,點(diǎn)P直線OB上的點(diǎn),要使點(diǎn)P,M,N構(gòu)成等腰三角形的點(diǎn)P________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題探究)

(1)如圖①已知銳角△ABC,分別以AB、AC為腰,在△ABC的外部作等腰RtABDRtACE,連接CD、BE,是猜想CD、BE的大小關(guān)系_____________ ;(不必證明)

(深入探究)

(2)如圖②△ABC、ADE都是等腰直角三角形,點(diǎn)D在邊BC上(不與B、C重合),連接EC,則線段 BC,DC,EC 之間滿足的等量關(guān)系式為________________ ;(不必證明) 線段 AD2,BD2,CD2之間滿足的等量關(guān)系,并證明你的結(jié)論;

(拓展應(yīng)用)

(3)如圖③,在四邊形 ABCD ,ABC=ACB=ADC=45°. BD=9,CD=3,

AD 的長(zhǎng).

① ② ③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運(yùn)算.

如:T(3,1)=,T(m,﹣2)=

(1)填空:T(4,﹣1)=   (用含a,b的代數(shù)式表示);

(2)T(﹣2,0)=﹣2T(5,﹣1)=6.

①求ab的值;

②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn).

(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DEDF,求證:BE=AF;

(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DEDF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是大半圓O的直徑,AO是小半圓M的直徑,點(diǎn)P是大半圓O上一點(diǎn),PA與小半圓M交于點(diǎn)C,過點(diǎn)C作CD⊥OP于點(diǎn)D.
(1)求證:CD是小半圓M的切線;
(2)若AB=8,點(diǎn)P在大半圓O上運(yùn)動(dòng)(點(diǎn)P不與A,B兩點(diǎn)重合),設(shè)PD=x,CD2=y. ①求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②當(dāng)y=3時(shí),求P,M兩點(diǎn)之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案