實踐與探究:
對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴≥
只有當(dāng)a=b時,等號成立。
結(jié)論:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時,a+b有最小值。 根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m= 時,有最小值 ;
若m>0,只有當(dāng)m= 時,2有最小值 .
(2)如圖,已知直線L1:與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1
于點D,試求當(dāng)線段CD最短時,點A、B、C、D圍成的四邊形面積.
(1)1,2 ;2,8 (2) (3)23
【解析】
解:(1)∵m>0,只有當(dāng)時,有最小值;
m>0,只有當(dāng)時,有最小值.
∴m>0,只有當(dāng)時,有最小值為2;
m>0,只有當(dāng)時,有最小值為8
(2)對于,令y=0,得:x=-2 ∴A(-2,0)
又點B(2,m)在上,∴m=-4 B(2,-4)
設(shè)直線L2的解析式為:,
則有,解得:
∴直線L2的解析式為:………6分
(3)設(shè)C,則:D
∴CD
∴CD最短為5,此時,n=4 ,C(4,-2),D(4,3)………8分
過點B作BE∥y軸交AD于點E,則B(2,-4)E(2,2) BE=6
∴S四ABCD=S△ABE+S四BEDC
………10分
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
實踐與探究:
對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴≥
只有當(dāng)a=b時,等號成立。
結(jié)論:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時,a+b有最小值。 根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m= 時,有最小值 ;
若m>0,只有當(dāng)m= 時,2有最小值 .
(2)如圖,已知直線L1:與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1
于點D,試求當(dāng)線段CD最短時,點A、B、C、D圍成的四邊形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省江陰長涇片八年級下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題
實踐與探究:
對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴≥
只有當(dāng)a=b時,等號成立。
結(jié)論:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時,a+b有最小值。 根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m= 時,有最小值 ;
若m>0,只有當(dāng)m= 時,2有最小值 .
(2)如圖,已知直線L1:與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1
于點D,試求當(dāng)線段CD最短時,點A、B、C、D圍成的四邊形面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com