【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.如圖,在△ABC中,AB>AC,點D,E分別在AB,AC上,設(shè)CD,BE相交于點O,如果∠A是銳角,∠DCB=∠EBC=∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.
【答案】存在等對邊四邊形,是四邊形DBCE,見解析
【解析】
作CG⊥BE于G點,作BF⊥CD交CD延長線于F點,證明△BCF≌△CBG,得到BF=CG,再證∠BDF=∠BEC,得到△BDF≌△CEG,故而BD=CE,即四邊形DBCE是等對邊四邊形.
解:此時存在等對邊四邊形,是四邊形DBCE.
如圖,作CG⊥BE于G點,作BF⊥CD交CD延長線于F點.
∵∠DCB=∠EBC=∠A,BC為公共邊,
∴△BCF≌△CBG,
∴BF=CG,
∵∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,
∴∠BDF=∠BEC,
∴△BDF≌△CEG,
∴BD=CE
∴四邊形DBCE是等對邊四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點P,Q.
(1)求P點的坐標;
(2)若△POQ的面積為9,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在地面上豎直安裝著AB、CD、EF三根立柱,在同一時刻同一光源下立柱AB、CD形成的影子為BG與DH.
(1)填空:判斷此光源下形成的投影是: 投影.
(2)作出立柱EF在此光源下所形成的影子.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,N為邊AD上一點,連接BN.過點A作AP⊥BN于點P,連接CP,M為邊AB上一點,連接PM,∠PMA=∠PCB,連接CM,有以下結(jié)論:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四點共圓;④AN=AM.其中正確的個數(shù)為( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D為⊙O上一點,點C在直徑AB的延長線上,且∠CDB=∠CAD,過點A作⊙O的切線,交CD的延長線于點E.
(1)判定直線CD與⊙O的位置關(guān)系,并說明你的理由;
(2)若CB=4,CD=8,①求圓的半徑.②求ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠A>∠B,分別以點A,C為圓心,大于AC長為半徑畫弧,兩弧交于點P,點Q,作直線PQ交AB于點D,再分別以點B,D為圓心,大于BD長為半徑畫弧,兩弧交于點M,點N,作直線MN交BC于點E,若△CDE是等邊三角形,則∠A=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+ 的圖象經(jīng)過A(﹣1,0),B(3,0),與y軸相交于點C.點P為第一象限的拋物線上的一個動點,過點P分別做BC和x軸的垂線,交BC于點E和F,交x軸于點M和N.
(1)求這個二次函數(shù)的解析式;
(2)求線段PE最大值,并求出線段PE最大時點P的坐標;
(3)若S△PMN=3S△PEF時,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數(shù)關(guān)系y=﹣5x2+20x,請根據(jù)要求解答下列問題:
(1)在飛行過程中,當小球的飛行高度為15m時,飛行時間是多少?
(2)在飛行過程中,小球從飛出到落地所用時間是多少?
(3)在飛行過程中,小球飛行高度何時最大?最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:⊙O上有三個點A,B,C,∠BAC=70°,請畫出要求的角,并標注.
(1)畫一個140°的圓心角;(2)畫一個110°的圓周角;(3)畫一個20°的圓周角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com