【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.如圖,在ABC中,ABAC,點D,E分別在AB,AC上,設(shè)CD,BE相交于點O,如果∠A是銳角,∠DCB=∠EBCA.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.

【答案】存在等對邊四邊形,是四邊形DBCE,見解析

【解析】

CGBEG點,作BFCDCD延長線于F點,證明△BCF≌△CBG,得到BFCG,再證∠BDF=∠BEC,得到△BDF≌△CEG,故而BDCE,即四邊形DBCE是等對邊四邊形.

解:此時存在等對邊四邊形,是四邊形DBCE

如圖,作CGBEG點,作BFCDCD延長線于F點.

∵∠DCB=∠EBCA,BC為公共邊,

∴△BCF≌△CBG,

BFCG,

∵∠BDF=∠ABE+EBC+DCB,∠BEC=∠ABE+A,

∴∠BDF=∠BEC,

∴△BDF≌△CEG,

BDCE

∴四邊形DBCE是等對邊四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點M0,2)的直線lx軸平行,且直線l分別與反比例函數(shù)yx0)和yx0)的圖象分別交于點P,Q

1)求P點的坐標;

2)若POQ的面積為9,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在地面上豎直安裝著AB、CD、EF三根立柱,在同一時刻同一光源下立柱ABCD形成的影子為BGDH.

1)填空:判斷此光源下形成的投影是: 投影.

2)作出立柱EF在此光源下所形成的影子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,N為邊AD上一點,連接BN.過點AAPBN于點P,連接CP,M為邊AB上一點,連接PM,∠PMA=∠PCB,連接CM,有以下結(jié)論:①PAM∽△PBC;②PMPC;③M、PC、B四點共圓;④ANAM.其中正確的個數(shù)為( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D為⊙O上一點,點C在直徑AB的延長線上,且∠CDB=∠CAD,過點A作⊙O的切線,交CD的延長線于點E

1)判定直線CD與⊙O的位置關(guān)系,并說明你的理由;

2)若CB4,CD8,①求圓的半徑.②求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A>B,分別以點A,C為圓心,大于AC長為半徑畫弧,兩弧交于點P,點Q,作直線PQAB于點D,再分別以點B,D為圓心,大于BD長為半徑畫弧,兩弧交于點M,點N,作直線MNBC于點E,若CDE是等邊三角形,則∠A=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ 的圖象經(jīng)過A(﹣1,0),B3,0),與y軸相交于點C.點P為第一象限的拋物線上的一個動點,過點P分別做BCx軸的垂線,交BC于點EF,交x軸于點MN

1)求這個二次函數(shù)的解析式;

2)求線段PE最大值,并求出線段PE最大時點P的坐標;

3)若SPMN3SPEF時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數(shù)關(guān)系y=﹣5x2+20x,請根據(jù)要求解答下列問題:

(1)在飛行過程中,當小球的飛行高度為15m時,飛行時間是多少?

(2)在飛行過程中,小球從飛出到落地所用時間是多少?

(3)在飛行過程中,小球飛行高度何時最大?最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:⊙O上有三個點A,B,C,∠BAC70°,請畫出要求的角,并標注.

1)畫一個140°的圓心角;(2)畫一個110°的圓周角;(3)畫一個20°的圓周角.

查看答案和解析>>

同步練習(xí)冊答案