【題目】已知二次函數(shù)的圖像經(jīng)過點(diǎn)A(0,2)和B(-1,-4).
(1)求此函數(shù)的解析式;并運(yùn)用配方法,將此拋物線解析式化為的形式;
(2)寫出該拋物線頂點(diǎn)C的坐標(biāo),并求出△CAO的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中 過點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫坐標(biāo),縱坐標(biāo)均為整數(shù)的點(diǎn),其順序按圖中“→”方向依次排列:(1,0)(2,0)(2,1)(1,1)(1,2)(2,2)根據(jù)這個(gè)規(guī)律,第2020個(gè)點(diǎn)的坐標(biāo)為( )
A.(45,5)B.(45,6)C.(45,7)D.(45,8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45.
(1)試判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑為3,sin∠ADE=,求AE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=﹣2x+4與兩坐標(biāo)軸分別交于點(diǎn)A、B,點(diǎn)C為線段OA上一動(dòng)點(diǎn),連接BC,作BC的中垂線分別交OB、AB交于點(diǎn)D、E.
(l)當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),DE= ;
(2)當(dāng)CE∥OB時(shí),證明此時(shí)四邊形BDCE為菱形;
(3)在點(diǎn)C的運(yùn)動(dòng)過程中,直接寫出OD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中(每個(gè)小正方形的邊長是1,小正方形的頂點(diǎn)叫作格點(diǎn)),△ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o平面直角坐標(biāo)系中按要求畫圖和解答下列問題:
(1)以點(diǎn)C為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得△CA1B1,畫出△CA1B1;
(2)作出△ABC關(guān)于點(diǎn)A成中心對稱的△AB2C2;
(3)設(shè)AC2與y軸交于點(diǎn)D,則△B1DC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB=5,AD=4,AD∥BM, (如圖),點(diǎn)C、E分別為射線BM上的動(dòng)點(diǎn)(點(diǎn)C、E都不與點(diǎn)B重合),聯(lián)結(jié)AC、AE,使得∠DAE=∠BAC,射線EA交射線CD于點(diǎn)F.設(shè)BC=x, .
(1)如圖1,當(dāng)x=4時(shí),求AF的長;
(2)當(dāng)點(diǎn)E在點(diǎn)C的右側(cè)時(shí),求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(3)聯(lián)結(jié)BD交AE于點(diǎn)P,若△ADP是等腰三角形,直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在解一元二次方程時(shí),他是這樣做的:
(1)小明的解法從第 步開始出現(xiàn)錯(cuò)誤;此題的正確結(jié)果是 .
(2)用因式分解法解方程:x(2x-1)=3(2x-1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com