如圖,在平面直角坐標(biāo)系中,△AOB為等腰直角三角形,A(4,4)
(1)求B點(diǎn)坐標(biāo);

(2)若C為x軸正半軸上一動(dòng)點(diǎn),以AC為直角邊作等腰直角△ACD,∠ACD=90°,連OD,求∠AOD的度數(shù);
(3)過點(diǎn)A作y軸的垂線交y軸于E,F(xiàn)為x軸負(fù)半軸上一點(diǎn),G在EF的延長線上,以EG為直角邊作等腰Rt△EGH,過A作x軸垂線交EH于點(diǎn)M,連FM,等式數(shù)學(xué)公式=1是否成立?若成立,請(qǐng)證明:若不成立,說明理由.

解:(1)作AE⊥OB于E,
∵A(4,4),
∴OE=4,
∵△AOB為等腰直角三角形,且AE⊥OB,
∴OE=EB=4,
∴OB=8,
∴B(8,0);

(2)作AE⊥OB于E,DF⊥OB于F,
∵△ACD為等腰直角三角形,
∴AC=DC,∠ACD=90°
即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
在△DFC和△CEA中,
∴△DFC≌△CEA,
∴EC=DF,F(xiàn)C=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
∴∠DOF=45°,
∵△AOB為等腰直角三角形,
∴∠AOB=45°,
∴∠AOD=∠AOB+∠DOF=90°;

方法一:過C作CK⊥x軸交OA的延長線于K,
則△OCK為等腰直角三角形,OC=CK,∠K=45°,
又∵△ACD為等腰Rt△,
∴∠ACK=90°-∠OCA=∠DCO,AC=DC,
∴△ACK≌△DCO(SAS),
∴∠DOC=∠K=45°,
∴∠AOD=∠AOB+∠DOC=90°;


(3)成立,理由如下:
在AM上截取AN=OF,連EN.
∵A(4,4),
∴AE=OE=4,
又∵∠EAN=∠EOF=90°,AN=OF,
∴△EAN≌△EOF(SAS),
∴∠OEF=∠AEN,EF=EN,
又∵△EGH為等腰直角三角形,
∴∠GEH=45°,即∠OEF+∠OEM=45°,
∴∠AEN+∠OEM=45°
又∵∠AEO=90°,
∴∠NEM=45°=∠FEM,
又∵EM=EM,
∴△NEM≌△FEM(SAS),
∴MN=MF,
∴AM-MF=AM-MN=AN,
∴AM-MF=OF,


方法二:在x軸的負(fù)半軸上截取ON=AM,連EN,MN,
則△EAM≌△EON(SAS),EN=EM,∠NEO=∠MEA,
即∠NEF+∠FEO=∠MEA,而∠MEA+∠MEO=90°,
∴∠NEF+∠FEO+∠MEO=90°,而∠FEO+∠MEO=45°,
∴∠NEF=45°=∠MEF,∴△NEF≌△MEF(SAS),∴NF=MF,
∴AM=OF=OF+NF=OF+MF,即
注:本題第(3)問的原型:已知正方形AEOP,∠GEH=45°,
將∠GEH的頂點(diǎn)E與正方形的頂點(diǎn)E重合,∠GEH的兩邊分別
交PO、AP的延長線于F、M,求證:AM=MF+OF.
分析:(1)因?yàn)椤鰽OB為等腰直角三角形,A(4,4),作AE⊥OB于E,則B點(diǎn)坐標(biāo)可求;
(2)作AE⊥OB于E,DF⊥OB于F,求證△DFC≌△CEA,再根據(jù)等量變換,證明△AOB為等腰直角三角形,則∠AOD的度數(shù)可求;
(3)等式成立.在AM上截取AN=OF,連EN,易證△EAN≌△EOF,再根據(jù)角與角之間的關(guān)系,證明△NEM≌△FEM,則有AM-MF=OF,即可求證等式成立.
點(diǎn)評(píng):此題考查了全等三角形的判定、等腰三角形的性質(zhì)和坐標(biāo)與圖形性質(zhì)結(jié)合求解,綜合性強(qiáng),難度較大.考查學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案