【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點A(3,3)、B(4,0)和原點O.P為二次函數(shù)圖象上的一個動點,過點Px軸的垂線,垂足為D(m,0),并與直線OA交于點C.

(1)求直線OA和二次函數(shù)的解析式;

(2)當(dāng)點P在直線OA的上方時,

①當(dāng)PC的長最大時,求點P的坐標(biāo);

②當(dāng)SPCO=SCDO時,求點P的坐標(biāo).

    

【答案】1y=x,y=x2+4x;(2P, );P2,4).

【解析】試題分析: 設(shè) A點坐標(biāo)代入即可求出二次函數(shù)解析式.設(shè)出直線的解析式,把點坐標(biāo)代入即可.

①根據(jù)點的坐標(biāo)求出 化成頂點式即可求出線段的最大值;

②根據(jù)點的坐標(biāo)設(shè)出點P和點C的坐標(biāo),表示出PCCD的長度,要使得 則有 代入求出坐標(biāo)即可;

試題解析: 設(shè)
A點坐標(biāo)代入得:

故函數(shù)的解析式為

設(shè)直線OA的解析式為 入得:

∴直線OA的解析式為

軸,P上,C上,

∴當(dāng) 時,PC的長最大,

②當(dāng) 時,即

當(dāng)時,則有 解得(舍去),

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=2,AM、BN是它的兩條切線,CD與⊙O相切于點E,與BNAM交于點C、D,設(shè)AD=x,BC=y。

(1)求證:AMBN。

(2)y關(guān)于x的函數(shù)關(guān)系式。

3)若xy是關(guān)于t的方程2t-5t+m=0的兩根,且xy=,求x、y的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠BAD60°

(1) 如圖1,點E為線段AB的中點,連接DE、CE.若AB4,求線段EC的長

(2) 如圖2,M為線段AC上一點(不與AC重合),以AM為邊向上構(gòu)造等邊三角形AMN,線段MNAD交于點G,連接NCDM,Q為線段NC的中點,連接DQ、MQ,判斷DMDQ的數(shù)量關(guān)系,并證明你的結(jié)論

(3) (2)的條件下,若AC,請你直接寫出DMCN的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.

(1)寫出你所知道的四邊形中是勾股四邊形的兩種圖形的名稱_____,_____;

(2)如圖,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°后得到△DBE,連接AD、DC,若∠DCB=30°,試證明;DC2+BC2=AC2.(即四邊形ABCD是勾股四邊形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:三點A(-1,1),B(-3,2),C(-4,-1).

(1)作出與△ABC關(guān)于原點對稱的△A1B1C1,并寫出各頂點的坐標(biāo);

(2)作出與△ABC關(guān)于P(1,-2)點對稱的△A2B2C2,并寫出各頂點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BDCD,過點DBC的平行線,與AB的延長線相交于點P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA;

3)當(dāng)AB=6AC=8時,求線段PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=m﹣2xm2+m-4 +2x﹣1是一個二次函數(shù),求該二次函數(shù)的解析式.

【答案】y=﹣5x2+2x﹣1

【解析】試題分析:根據(jù)二次函數(shù)的定義得到m2+m﹣4=2m﹣2≠0,由此求得m的值,進而得到該二次函數(shù)的解析式.

試題解析:依題意得:m2+m﹣4=2m﹣2≠0即(m﹣2)(m+3=0m﹣2≠0,

解得m=﹣3,

則該二次函數(shù)的解析式為y=﹣5x2+2x﹣1

型】解答
結(jié)束】
21

【題目】如圖,在ABCD中,EF∥AB,F(xiàn)G∥ED,DE:DA=2:5,EF=4,求線段CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是正方形對角線上一動點,點在射線上,且,連接,中點.

1)如圖1,當(dāng)點在線段上時,試猜想的數(shù)量關(guān)系和位置關(guān)系,并說明理由;

2)如圖2,當(dāng)點在線段上時,(1)中的猜想還成立嗎?請說明理由;

3)如圖3,當(dāng)點的延長線上時,請你在圖3中畫出相應(yīng)的圖形,并判斷(1)中的猜想是否成立?若成立,請直接寫出結(jié)論;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量校園內(nèi)一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)應(yīng)用實踐小組做了如下的探索:

實踐:根據(jù)《自然科學(xué)》中的反射定律,利用一面鏡子和一根皮尺,設(shè)計如右示意圖的測量方案:把鏡子放在離樹(AB8.7米的點E處,然后沿著直線BE后退到點D,這是恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=2.7米,觀察者目高CD=1.6米,請你計算樹(AB)的高度(精確到0.1米)

查看答案和解析>>

同步練習(xí)冊答案