【題目】AOB中,C,D分別是OA、OB邊上的點,將OCD繞點O順時針旋轉(zhuǎn)到OC′D′.如圖,若∠AOB=90°,OA=OB,C,D分別為OA,OB的中點.求證:

(1)AC′=BD′;

(2)AC′BD.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)由旋轉(zhuǎn)的性質(zhì)得出OC=OC′,OD=OD′,AOC′=BOD′,證出OC′=OD′,由SAS證明AOC′≌△BOD′,得出對應(yīng)邊相等即可;

(2)由全等三角形的性質(zhì)得出∠OAC′=OBD′,又由對頂角相等和三角形內(nèi)角和定理得出∠BEA=90°,即可得出結(jié)論

1)∵將OCD繞點O順時針旋轉(zhuǎn)到,

OC=OD=,∠=

OA=OBC、DOA,OB的中點,

OC=OD,

中,,

∴△≌△

=

2)延長E,交BOF

∵△≌△

∴∠

又∠AFO=BFE,∠,

∴∠

∴∠BEA=,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BC垂直且平分半徑OD,AB=6,

(1)求∠ABC的度數(shù);

(2)BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形OABC的邊長為2,頂點A,C分別在x軸,y軸的正半軸上,點E是BC的中點,F(xiàn)是AB延長線上一點且FB=1.

(1)求經(jīng)過點O,A,E三點的拋物線解析式;

(2)點P在拋物線上運動,當(dāng)點P運動到什么位置時△OAP的面積為2,請求出點P的坐標(biāo);

(3)在拋物線上是否存在一點Q,使△AFQ是等腰直角三角形?若存在直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校20名數(shù)學(xué)教師的年齡(單位:歲)情況如下:29,42,58,37,53,52,49,24,37,46,42,55,40,38,50,26,54,26,44,52.

(1)填寫下面的頻率分布表:

分組

頻數(shù)

頻率

19.5~29.5

29.5~39.5

39.5~49.5

49.5~59.5

合計

(2)畫出數(shù)據(jù)的頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,ADBC邊上的中線.

(1)畫出與△ACD關(guān)于點D成中心對稱的三角形;

(2)找出與AC相等的線段;

(3)探究:△ABCABAC的和與中線AD之間有何大小關(guān)系?并說明理由;

(4)AB=5,AC=3,求線段AD的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形DEFG的頂點D、EABC的邊BC上,頂點G、F分別在邊AB、AC上.如果BC=4,ABC的面積是6,那么這個正方形的邊長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個警察抓兩個小偷,目擊者說:兩個小偷分別躲藏在六個房間中的兩間,但不知道他們到底躲藏在哪兩間。而如果警察沖進了無人的房間,那么小偷就會趁機逃跑。如果兩個警察隨機地沖進兩個房間抓小偷,(1)至少能抓獲一個小偷的概率是多少?(2)兩個小偷全部抓獲的概率是多少?請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙的直徑,CD是∠ACB的平分線交⊙O于點D,過D作⊙O的切線交CB的延長線于點E.若AB=4,∠E=75°,則CD的長為(  )

A. B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象的頂點在原點O,且經(jīng)過點A(1,).

(1)求此函數(shù)的解析式;

(2)將該拋物線沿著y軸向上平移后頂點落在點P處,直線x=2分別交原拋物和新拋物線于點MN,且SPMN= , 求:MN的長以及平移后拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案