將一塊直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,展開(kāi)后平鋪在桌面上(如圖所示).若∠C=90°,BC=8cm,則折痕DE的長(zhǎng)度是      cm.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)將一塊直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,展開(kāi)后平鋪在桌面上(如圖所示).若∠C=90°,BC=8cm,則折痕DE的長(zhǎng)度是
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

操作與探究:
在八年級(jí)探究“直角三角形斜邊上的中線(xiàn)等于斜邊的一半”這個(gè)結(jié)論時(shí),我們是將一塊直角三角形紙片按照?qǐng)D①方法折疊(點(diǎn)A與點(diǎn)C重合,DE為折痕).再將圖①中的△CBE沿對(duì)稱(chēng)軸EF折疊(如圖②),通過(guò)折疊,可以發(fā)現(xiàn)CE=AE=BE=
12
AB.
(1)在上述的折疊過(guò)程中,我們還可以發(fā)現(xiàn)原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無(wú)縫無(wú)重疊)所成的矩形,我們稱(chēng)這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請(qǐng)?jiān)趫D③中畫(huà)出折痕;
(2)有一些特殊的四邊形,如菱形,通過(guò)折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請(qǐng)你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿(mǎn)足什么條件時(shí),一定能折成組合矩形?
滿(mǎn)足的條件是
兩條對(duì)角線(xiàn)互相垂直
兩條對(duì)角線(xiàn)互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:填空題

將一塊直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,展開(kāi)后平鋪在桌面上(如

圖所示).若∠C=90°,BC=8cm,則折痕DE的長(zhǎng)度是    cm.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:填空題

將一塊直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,展開(kāi)后平鋪在桌面上(如

圖所示).若∠C=90°,BC=8cm,則折痕DE的長(zhǎng)度是    cm.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在八年級(jí)探究“直角三角形斜邊上的中線(xiàn)等于斜邊的一半”這個(gè)結(jié)論時(shí),我們是將一塊直角三角形紙片按照?qǐng)D①方法折疊(點(diǎn)A與點(diǎn)C重合,DE為折痕).再將圖①中的△CBE沿對(duì)稱(chēng)軸EF折疊(如圖②),通過(guò)折疊,可以發(fā)現(xiàn)CE=AE=BE=數(shù)學(xué)公式AB.
(1)在上述的折疊過(guò)程中,我們還可以發(fā)現(xiàn)原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無(wú)縫無(wú)重疊)所成的矩形,我們稱(chēng)這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請(qǐng)?jiān)趫D③中畫(huà)出折痕;
(2)有一些特殊的四邊形,如菱形,通過(guò)折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請(qǐng)你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿(mǎn)足什么條件時(shí),一定能折成組合矩形?
滿(mǎn)足的條件是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案