5.因式分解:9n2+1-6n=(3n-1)2

分析 直接利用完全平方公式分解因式得出答案.

解答 解:9n2+1-6n=(3n-1)2
故答案為:(3n-1)2

點(diǎn)評(píng) 此題主要考查了公式法分解因式,正確應(yīng)用完全平方公式是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.解方程:
(1)2x2-3x-1=0               
(2)$\frac{1}{x-2}$=$\frac{1-x}{2-x}$-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如果一個(gè)自然數(shù)能表示為兩個(gè)自然數(shù)的平方差,那么稱這個(gè)自然數(shù)為智慧數(shù),例如:16=52-32,16就是一個(gè)智慧數(shù),小明和小王對(duì)自然數(shù)中的智慧數(shù)進(jìn)行了如下的探索:
小明的方法是一個(gè)一個(gè)找出來的:
0=02-02,1=12-02,3=22-12,
4=22-02,5=32-22,7=42-32,
8=32-12,9=52-42,11=62-52,…
小王認(rèn)為小明的方法太麻煩,他想到:
設(shè)k是自然數(shù),由于(k+1)2-k2=(k+1+k)(k+1-k)=2k+1.
所以,自然數(shù)中所有奇數(shù)都是智慧數(shù).
問題:
(1)根據(jù)上述方法,自然數(shù)中第12個(gè)智慧數(shù)是15;
(2)他們發(fā)現(xiàn)0,4,8是智慧數(shù),由此猜測4k(k≥3且k為正整數(shù))都是智慧數(shù),請(qǐng)你參考小王的辦法證明4k(k≥3且k為正整數(shù))都是智慧數(shù);
(3)他們還發(fā)現(xiàn)2,6,10都不是智慧數(shù),由此猜測4k+2(k為自然數(shù))都不是智慧數(shù),請(qǐng)利用所學(xué)的知識(shí)判斷26是否是智慧數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如果α、β是一元二次方程x2+3x-2=0的兩個(gè)根,則α2+2α-β+2016的值是2021.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.今年3月5日,李克強(qiáng)總理在《政府工作報(bào)告》中指出,到2020年,我國經(jīng)濟(jì)總量將超過90萬億元,90萬億元用科學(xué)記數(shù)法表示為( 。
A.9×1011B.90×1010C.9×1012D.9×1013

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.已知:如圖,直線y=-$\frac{1}{2}$x+1與x軸、y軸的交點(diǎn)分別是A和B,把線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得線段AB′.
(1)直接寫出點(diǎn)B′的坐標(biāo);
(2)若點(diǎn)C(1,a)在第一象限內(nèi),并且S△ABC=S△ABB′,求a的值;
(3)P在x軸上,且△PAB是等腰三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.用代入法解方程組:$\left\{\begin{array}{l}{3x-y=7,①}\\{5x+2y=8②}\end{array}\right.$.
小明是這樣解的:解:由①,得y=3x-7,③第一步
把③代人①,得3x-(3x-7)=7,第二步
即7=7.第三步
所以此方程組無解.第四步
你認(rèn)為他的解法有誤嗎?若有誤,錯(cuò)在第第二步步,請(qǐng)寫出正確的解法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.已知關(guān)于x的不等式組$\left\{\begin{array}{l}{x>a}\\{x>1}\end{array}\right.$的解集為x>1,則a的取值范圍是a≤1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.二次函數(shù)y=$\frac{2}{3}$x2-$\frac{\sqrt{2}}{3}$x+1的最小值是$\frac{11}{12}$.

查看答案和解析>>

同步練習(xí)冊答案