7、若拋物線過點(1,0)且其解析式中二次項系數(shù)為1,則它的解析式為
y=x2+x-2
.(任寫一個)
分析:根據(jù)點(1,0)在拋物線上,根據(jù)待定系數(shù)法求函數(shù)解析式寫出一個符合要求的即可.
解答:解:拋物線y=x2+x-2,經(jīng)過點(1,0).
故答案為:y=x2+x-2(答案不唯一).
點評:本題考查了待定系數(shù)法求函數(shù)解析式,是開放型題目,可以先根據(jù)要求確定二次項與一次項,然后再根據(jù)經(jīng)過的點的坐標確定常數(shù)項,或?qū)懖缓淮雾椀慕馕鍪揭部,此類題目答案不唯一,所寫解析式越簡單越好.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•龍巖質(zhì)檢)在平面直角坐標系中,ABOC如圖放置,點A、C的坐標分別為(0,3)、(-1,0),
將ABOC繞點0順時針旋轉(zhuǎn)90°,得到A′B′OC′,若拋物線過點C、A、A′.
(1)求此拋物線的解析式;
(2)若p拋物線的對稱軸上一點,使得PA′+PB′的值最小,求出點P的坐標及PA′+PB′的最小值;
(3)若點M是拋物線上的一點,問是否存在以點A、A′、C′、M為頂點的梯形?若存在,求出此時點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線的方程為y=-
1m
(x+2)(x-m)
(m>0),與x軸交于點B、C,與y軸交于點E,且點B在點C的左側(cè).
(1)若拋物線過點M(2,2),求實數(shù)m的值;
(2)在(1)的條件下,求△BCE的面積;
(3)在(1)的條件下,在拋物線的對稱軸上找一點H,使得BH+EH最小,求出點H的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•綏化)如圖,已知拋物線y=
1a
(x-2)(x+a)(a>0)與x軸交于點B、C,與y軸交于點E,且點B在點C的左側(cè).
(1)若拋物線過點M(-2,-2),求實數(shù)a的值;
(2)在(1)的條件下,解答下列問題;
①求出△BCE的面積;
②在拋物線的對稱軸上找一點H,使CH+EH的值最小,直接寫出點H的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在平面直角坐標系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點O順時針旋轉(zhuǎn)90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點F.
(1)若拋物線過點A、B、C,求此拋物線的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點M是第三象限內(nèi)拋物線上的一動點,點M在何處時△AMC的面積最大?最大面積是多少?求出此時點M的坐標.

查看答案和解析>>

同步練習冊答案