【題目】解方程:
(1)(2x﹣3)2=25
(2)(2x﹣1)3=﹣8.

【答案】
(1)解:∵(2x﹣3)2=25,

∴2x﹣3=±5,

∴2x=3±5,

∴x1=4,x2=﹣1


(2)解:∵(2x﹣1)3=﹣8,

∴2x﹣1=2,

∴x=


【解析】(1)用平方根的意義直接解答,(2)用立方根的意義直接解答.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平方根的基礎(chǔ)和立方根的相關(guān)知識可以得到問題的答案,需要掌握如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(或二次方跟);一個(gè)數(shù)有兩個(gè)平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根;如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)就叫做a 的立方根(或a 的三次方根);一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:

1)有4張桌子,用第一種擺設(shè)方式,可以坐   人;用第二種擺設(shè)方式,可以坐   人;

2)有n張桌子,用第一種擺設(shè)方式可以坐   人;用第二種擺設(shè)方式,可以坐   人(用含有n的代數(shù)式表示);

3)一天中午,餐廳要接待120位顧客共同就餐,但餐廳中只有30張這樣的長方形桌子可用,且每6張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種拉桿式旅行箱的示意圖如圖所示,箱體長AB=50cm,拉桿最大伸長距離BC=35cm,(點(diǎn)A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,⊙A與水平地面切于點(diǎn)D,AE∥DN,某一時(shí)刻,點(diǎn)B距離水平面38cm,點(diǎn)C距離水平面59cm.

(1)求圓形滾輪的半徑AD的長;

(2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感覺較為舒服,已知某人的手自然下垂在點(diǎn)C處且拉桿達(dá)到最大延伸距離時(shí),點(diǎn)C距離水平地面73.5cm,求此時(shí)拉桿箱與水平面AE所成角∠CAE的大。ň_到1°,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀解題過程,回答問題.

如圖,OC在∠AOB內(nèi),AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).

:O點(diǎn)作射線OM,使點(diǎn)M,O,A在同一直線上.

因?yàn)椤?/span>MOD+BOD=90°,BOC+BOD=90°,所以∠BOC=MOD,

所以∠AOD=180°-BOC=180°-30°=150°.

(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?

(2)如果∠AOB=DOC=x°,AOD=y°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有( ) ①無理數(shù)是無限小數(shù);②無限小數(shù)是無理數(shù);③開方開不盡的數(shù)是無理數(shù);④兩個(gè)無理數(shù)的和一定是無理數(shù);⑤無理數(shù)的平方一定是有理數(shù).
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定※是一種新的運(yùn)算符號,且a※b=ab+a+b,例如:2※3=2×3+2+3=11,那么(3※4)※1=(
A.19
B.29
C.39
D.49

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.

當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),

如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;

當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),

如圖2,點(diǎn)A、B都在原點(diǎn)的右邊

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;

如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;

如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,

∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;

回答下列問題:

(1)數(shù)軸上表示3和7的兩點(diǎn)之間的距離是 ,數(shù)軸上表示-1和-3的兩點(diǎn)之間的距離是 ,數(shù)軸上表示1和-2的兩點(diǎn)之間的距離是 .

(2)數(shù)軸上表示x和-2的兩點(diǎn)A和B之間的距離是 ,如果∣AB∣=2,那么x

(3)當(dāng)代數(shù)式∣x∣+∣x-1∣取最小值時(shí),最小值是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣2x=0的解為

查看答案和解析>>

同步練習(xí)冊答案