【題目】ABC在平面直角坐標系中,且A(-2,1)B(-3,-2)、C(1,-4),將其平移后得到A、B的對應(yīng)點是C的對應(yīng)點的坐標是(3,-1).

(1)在平面直角坐標系中畫出ABC

(2)寫出點的坐標是__________,的坐標是___________;

(3)此次平移也可看作_______平移____個單位長度,再向_____平移了____個單位長度;

(4)ABC的面積為_________.

【答案】1)圖見解析(20,4),-1,1)(3)右,2,上,347

【解析】

1)根據(jù)坐標可直接畫出△ABC;

2)根據(jù)平移之后圖形上所有點的橫縱坐標都平移相同的長度,可得的坐標;

3)根據(jù)圖形平移前后的位置關(guān)系解答即可.

4)△ABC的面積可用長方形的面積減去三個小三角形的面積求得.

1)△ABC的位置如下圖;

2)由題可知C(1,-4)的對應(yīng)點的坐標是(3,-1),橫坐標加2,縱坐標加3,

∴點的坐標是(04),的坐標是(-11);

3)根據(jù)C(1,-4)的對應(yīng)點的坐標是(3,-1),橫坐標加2,縱坐標加3

易得此次平移也可看作向右平移2個單位長度,再向上平移了3個單位長度;

4=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時將點A,B分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,AB.

(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD;

(2)在y軸上是否存在一點M,連接MC,MD,使SMCD=S四邊形ABDC?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;

(3)點P是直線BD上的一個動點,連接PA,PO,當點PBD上移動時(不與B,D重合),直接寫出∠BAP、DOP、APO之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】抗震救災(zāi)中,某縣糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到具有較強抗震功能的A、B兩倉庫.已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為70噸,B庫的容量為110噸.從甲、乙兩庫到A、B兩庫的路程和運費如下表:(表中“元/噸千米”表示每噸糧食運送1千米所需人民幣)

路程(千米)

運費(元/噸千米)

甲庫

乙?guī)?/span>

甲庫

乙?guī)?/span>

A

20

15

12

12

B

25

20

10

8

1)若甲庫運往A庫糧食x噸,請寫出將糧食運往AB兩庫的總運費y(元)與x(噸)的函數(shù)關(guān)系式;

2)當甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,∠BAD的平分線AEBC邊交于點E,點P是線段AE上一定點(其中PAPE),過點PAE的垂線與AD邊交于點F(不與D重合).一直角三角形的直角頂點落在P點處,兩直角邊分別交AB邊,AD邊于點M,N

1)求證:PAM≌△PFN

2)若PA3,求AM+AN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育老師對九年級甲、乙兩個班級各10名女生立定跳遠項目進行了檢測,兩班成績?nèi)缦拢?/span>

甲班 13 11 10 12 11 13 13 12 13 12

乙班 12 13 13 13 11 13 6 13 13 13

(1)分別計算兩個班女生立定跳遠項目的平均成績;

(2)哪個班的成績比較整齊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校位于小亮家北偏東35方向,距離為300m,學校位于大剛家南偏東85°方向,距離也為300m,則大剛家相對于小亮家的位置是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內(nèi),△ABC的三個頂點坐標分別為A(1,4),B(1,1),C(3,1).

(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1

(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;

(3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳館每年夏季推出兩種游泳付費方式,方式一:先購買會員證,每張會員證100元,只限本人當年使用,憑證游泳每次再付費5元;方式二:不購買會員證,每次游泳付費9元.

設(shè)小明計劃今年夏季游泳次數(shù)為x(x為正整數(shù)).

(I)根據(jù)題意,填寫下表:

游泳次數(shù)

10

15

20

x

方式一的總費用(元)

150

175

______

______

方式二的總費用(元)

90

135

______

______

(Ⅱ)若小明計劃今年夏季游泳的總費用為270元,選擇哪種付費方式,他游泳的次數(shù)比較多?

(Ⅲ)當x>20時,小明選擇哪種付費方式更合算?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】楊梅是漳州的特色時令水果.楊梅一上市,水果店的老板用1200元購進一批楊梅,很快售完;老板又用2500元購進第二批楊梅,所購件數(shù)是第一批的2倍,但進價每件比第一批多了5.

1)第一批楊梅每件進價多少元?

2)老板以每件150元的價格銷售第二批楊梅,售出后,為了盡快售完,決定打折促銷.要使得第二批楊梅的銷售利潤不少于320元,剩余的楊梅每件售價至少打幾折(利潤售價進價)?

查看答案和解析>>

同步練習冊答案