如圖,已知AB是⊙O的直徑,C、D是⊙O上兩點.且∠D=130°.則∠BAC的度數(shù)是_________
40°.

試題分析:根據(jù)圓周角定理,由AB是⊙O的直徑,可證∠ACB=90°,由圓內(nèi)接四邊形的對角互補可求∠B=180°-∠D=50°,即可求∠BAC=90°-∠B=40°.
試題解析:∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠B=180°-∠D=50°,
∴∠BAC=90°-∠B=40°.
考點: 1.圓周角定理;2.圓內(nèi)接四邊形的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AC為⊙O的直徑,AC=4,B、D分別在AC兩側的圓上,∠BAD=60°,BD與AC的交點為E.

(1)求∠BOD的度數(shù)及點O到BD的距離;
(2)若DE=2BE,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:△ABC(如圖),

(1)求作:作△ABC的內(nèi)切圓⊙I.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法,不要求證明).
(2)在題(1)已經(jīng)作好的圖中,若∠BAC=88°,求∠BIC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形網(wǎng)格中,△ABC為格點三角形(頂點都是格點),將△ABC繞點A按逆時針方向旋轉90°得到△AB1C1

(1)在正方形網(wǎng)格中,作出△AB1C1;(不要求寫作法)
(2)設網(wǎng)格小正方形的邊長為1cm,用陰影表示出旋轉過程中線段BC所掃過的圖形,然后求出它的面積.(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點A、E,是半圓周上的三等分點,直徑=2,,垂足為,連接交于,過作∥交于.

(1)判斷直線與⊙的位置關系,并說明理由.
(2)求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,⊙A與y軸相切于點,與x軸相交于M、N兩點.如果點M的坐標為,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,以點(3,2)為圓心,3為半徑的圓,一定
A.與x軸相切,與y軸相切B.與x軸相切,與y軸相交
C.與x軸相交,與y軸相切D.與x軸相交,與y軸相交

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙A和⊙B的半徑分別為2和3,AB=7,若將⊙A繞點C逆時針方向旋轉一周角,⊙A與⊙B相切的次數(shù)為
A.4B.3C.2   D.1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O是△ABC的外接圓,已知∠ABO=50°,則∠ACB的大小為( 。
A.40°B.30°C.50°D.60°

查看答案和解析>>

同步練習冊答案