精英家教網 > 初中數學 > 題目詳情

【題目】已知二次函數h為常數),在自變量的值滿足的情況下,與其對應的函數值的最大值為0,則的值為( )

A. B. C. D.

【答案】A

【解析】

由解析式可知該函數在x=h時取得最大值1xh時,yx的增大而增大、當xh時,yx的增大而減小,根據1≤x≤4時,函數的最大值為0,可分如下兩種情況:①若h1≤x≤4,x=1時,y取得最大值0;②若1≤x≤4h,當x=4時,y取得最大值0,分別列出關于h的方程求解即可.

xh時,yx的增大而增大、當xh時,yx的增大而減小,
∴①若h1≤x≤4,x=1時,y取得最大值0,
可得:-1-h2+4=0,
解得:h=1h=3(舍);
②若1≤x≤4h,當x=4時,y取得最大值0
可得:-4-h2+4=0,
解得:h=2(舍)或h=6
綜上,h的值為-16,
故選:A

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,一艘輪船在近海處由西向東航行,點C處有一燈塔,燈塔附近30海里的圓形區(qū)域內有暗礁,輪船在A處測得燈塔在北偏東60°方向上,輪船又由A向東航行40海里到B處,測得燈塔在北偏東30°方向上.

1)求輪船在B處時到燈塔C處的距離是多少?

2)若輪船繼續(xù)向東航行,有無觸礁危險?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ly=x,過點A11,0)作A1B1x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2;再作A2B2x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫圓弧交x軸于點A3,按此作法進行下去,則的長為______(用含nπ的式子表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,做的平分線,在的兩邊上分別截取,再以點為圓心,線段長為半徑畫弧,交于點,連接.

1)求證:四邊形是菱形;

2)尺規(guī)作圖:作線段的垂直平分線,分別交于點,于點,連接(不寫做法,保留作圖痕跡);

3)當時,判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.

1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.

2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,直線軸負半軸交于點,與軸正半軸交于點,線段的長是方程的一個根,請解答下列問題:

1)求點的坐標;

2)雙曲線與直線交于點,且,求的值;

3)在(2)的條件下,點在線段上,,直線軸,垂足為,點在直線上,在直線上的坐標平面內是否存在點,使以點、、為頂點的四邊形是矩形?若存在,請求出點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;

(3當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠ABC2C,小明做了如下操作:

)以A為圓心,AB長為半徑畫弧,交AC于點F

)以A為圓心,任意長為半徑畫弧,交AB、ACM、N兩點,分別以MN為圓心,以大于MN為半徑畫弧,兩弧交于一點P,作射線AP,交BC于點E;

)作直線EF.

依據小明尺規(guī)作圖的方法,若AB3.3,BE1.8,則AC的長為___________;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,AD=CD,E是對角線BD上一點,且EA=EC.

(1)求證:四邊形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

同步練習冊答案