【題目】ABC中,BC=a.作BC邊的三等分點C1,使得CC1BC1=12,過點C1AC的平行線交AB于點A1,過點A1BC的平行線交AC于點D1,作BC1邊的三等分點C2,使得C1C2BC2=12,過點C2AC的平行線交AB于點A2,過點A2BC的平行線交A1C1于點D2;如此進(jìn)行下去,則線段AnDn的長度為______________.

【答案】

【解析】

根據(jù)平行四邊形的判定定理得到四邊形A1C1CD1為平行四邊形,根據(jù)平行四邊形的性質(zhì)得到A1D1=C1C,總結(jié)規(guī)律,根據(jù)規(guī)律解答.

A1C1AC,A1D1BC

∴四邊形A1C1CD1為平行四邊形,

A1D1=C1C=a=

同理,四邊形A2C2C1D2為平行四邊形,

A2D2=C1C2=a=,

……

∴線段AnDn=,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校決定在4月7日開展“世界無煙日”宣傳活動,活動有A社區(qū)板報、B集會演講、C喇叭廣播、D發(fā)宣傳畫四種宣傳方式.學(xué)校圍繞“你最喜歡的宣傳方式是什么?”在全校學(xué)生中進(jìn)行隨機抽樣調(diào)查(四個選項中必選且只選一項),根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了兩種不完整的統(tǒng)計圖表:

選項

方式

百分比

A

社區(qū)板報

35%

B

集會演講

m

C

喇叭廣播

25%

D

發(fā)宣傳畫

10%

請結(jié)合統(tǒng)計圖表,回答下列問題:

(1)本次抽查的學(xué)生共人,m= , 并將條形統(tǒng)計圖補充完整;
(2)若該校學(xué)生有1500人,請你估計該校喜歡“集會演講”這項宣傳方式的學(xué)生約有多少人?
(3)學(xué)校采用抽簽方式讓每班在A、B、C、D四種宣傳方式在隨機抽取兩種進(jìn)行展示,請用樹狀圖或列表法求某班所抽到的兩種方式恰好是“集會演講”和“喇叭廣播”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O,A兩處觀測P處,仰角分別為α、β,且tanα= ,tan ,以O(shè)為原點,OA所在直線為x軸建立直角坐標(biāo)系.

(1)求點P的坐標(biāo);
(2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題

如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°)
(1)當(dāng)∠BAC=60°時,將BP旋轉(zhuǎn)到圖2位置,點D在射線BP上.若∠CDP=120°,則∠ACD∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關(guān)系是
(2)當(dāng)∠BAC=120°時,將BP旋轉(zhuǎn)到圖3位置,點D在射線BP上,若∠CDP=60°,求證:BD﹣CD= AD;
(3)將圖3中的BP繼續(xù)旋轉(zhuǎn),當(dāng)30°<α<180°時,點D是直線BP上一點(點P不在線段BD上),若∠CDP=120°,請直接寫出線段BD、CD與AD之間的數(shù)量關(guān)系(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從1、2、3、4中任取一個數(shù)作為十位上的數(shù)字,再從余下的數(shù)字中任取一個數(shù)作為個位上的數(shù)字,那么組成的兩位數(shù)是6的倍數(shù)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機,某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.

(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?

(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?

(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE△BC′F的周長之和為( 。

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AMCN,點B為平面內(nèi)一點,ABBCB.

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系___;

(2)如圖2,過點BBDAM于點D,求證:∠ABD=C;

(3)如圖3,(2)問的條件下,E. FDM,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+NCF=180°,∠BFC=3DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠E=F=90°,∠B=C,AE=AF,有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=EAM;④△ACN≌△ABM.其中正確的結(jié)論有_____個.

查看答案和解析>>

同步練習(xí)冊答案