如圖,已知菱形ABCD,點G在BC的延長線上,連接AG,與邊CD交于點E,與對角線BD交于點F,求證:AF2=EF•FG.

【答案】分析:由菱形ABCD得兩組比例線段,=,則,即AF2=FE•FG.
解答:證明:【法一】:∵菱形ABCD
∴AD∥BG,AB∥CD(2分)
(2分),=(2分)
可得,即AF2=FE•FG(2分)
【法二】:連接CF,
∵菱形ABCD,證得CF=AF,(2分)
證明△FCE∽△FGC,(3分)
可得,從而CF2=FE•FG(2分)
即AF2=FE•FG(1分)
點評:本題考查了菱形的性質(zhì)、相似三角形的判定和性質(zhì),是基礎知識要熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的邊長為1.5cm,B,C兩點在扇形AEF的
EF
上,求
BC
的長度及扇形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的周長為16cm,∠ABC=60°,對角線AC和BD相交于點O,求AC和BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖,已知菱形ADEF和等腰三角形ABC,AB=AC,∠BAC=54°,點B、C分別在DE、EF.(B、C分別不與E、F重合)
(1)如圖1,當AE平分∠BAC時,
①求證:BD=CF;
②當AD=AB時,求∠ABD的度數(shù);
(2)如圖2,當AE不平分∠BAC時,若△ADB是一個等腰三角形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知菱形ABCD邊長為6
3
,∠ABC=120°,點P在線段BC延長線上,半徑為r1的圓O1與DC、CP、DP分別相切于點H、F、N,半徑為r2的圓O2與PD延長線、CB延長線和BD分別相切于點M、E、G.
(1)求菱形的面積;
(2)求證:EF=MN;
(3)求r1+r2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知菱形ABCD為2cm.B、C兩點在以點A為圓心的
EF
上,求
BC
的長度及扇形ABC的面積.(結果保留π)

查看答案和解析>>

同步練習冊答案