如圖①,四邊形ABCD是正方形, 點(diǎn)G是BC上任意一點(diǎn),DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F.

(1) 求證:DE-BF = EF.

(2) 當(dāng)點(diǎn)G為BC邊中點(diǎn)時(shí), 試探究線段EF與GF之間的數(shù)量關(guān)系, 并說明理由.

(3) 若點(diǎn)G為CB延長線上一點(diǎn),其余條件不變.請(qǐng)你在圖②中畫出圖形,寫出此時(shí)DE、BF、EF之間的數(shù)量關(guān)系(不需要證明).

                                                                              

 (1) 證明:

∵ 四邊形ABCD 是正方形, BFAG , DEAG

DA=AB, ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE  

∴ △ABF ≌ △DAE        ∴ BF = AEAF = DE   

DEBF = AFAE = EF 

(2)EF = 2FG       理由如下:∵ ABBC , BFAG , AB =2 BG

∴ △AFB ∽△BFG ∽△ABG     

  ∴  AF = 2BF , BF = 2 FG   

由(1)知,  AE = BF,∴ EF = BF = 2 FG    

(3) 如圖  DE + BF = EF   

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點(diǎn)D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂精英家教網(wǎng)足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)含y的代數(shù)式表示AE;
(2)y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(3)設(shè)四邊形DECF的面積為S,x在什么范圍時(shí)s隨x增大而增大.x在什么范圍時(shí)s隨x增大而減小,并畫出s與x圖象;
(4)求出x為何值時(shí),面積s最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,AE=EF=FC,BE、AD相交于點(diǎn)G,下列4個(gè)結(jié)論:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四邊形EFDG;其中正確的有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案