【題目】已知如圖,在平面直角坐標(biāo)系中,點(diǎn) B(m,0)、A(n,0)分別是 x 軸軸上兩點(diǎn), 且滿(mǎn)足多項(xiàng)式(x2mx+8)(x23xn)的積中不含 x3項(xiàng)和 x2項(xiàng),點(diǎn) P(0,h) y 軸正半軸上的動(dòng)點(diǎn)

(1)求三角形ABP 的面積(用含 h 的代數(shù)式表示)

(2)過(guò)點(diǎn) P DPPB,CPPA,且 PDPB,PCAP

連接 ADBC 相交于點(diǎn) E,再連 PE,求∠BEP 的度數(shù)

CD y 軸相交于點(diǎn) Q,當(dāng)動(dòng)點(diǎn) P y 軸正半軸上運(yùn)動(dòng)時(shí),線(xiàn)段 PQ 的長(zhǎng)度變不變?如果不變,請(qǐng)求出其值;如果變化,請(qǐng)求出其變化范圍

【答案】(1) m=3,n=1; =h;(2) ∠BEP=135;(3)PQ=1.

【解析】

(1)由多項(xiàng)式(x2mx+8)(x2-3xn)的積中不含 x3項(xiàng)和 x2項(xiàng),可求得m、n的值,可求得三角形ABP 的面積;

(2)①又DPPB,CPPA,且 PDPB,PCAP,可證△BPC≌△DPA,可得∠C=∠A,在CB的線(xiàn)段上取F點(diǎn),使得CF=AE,連接PF,可得△CPF≌△APE,可得PF=PE, ∠CPF= ∠APE,可得△PEF為等腰直角三角形,可求出∠BEP 的度數(shù);

②由DPPB,CPPA,且 PDPB,PCAP,A點(diǎn)坐標(biāo)為(1,0),B點(diǎn)坐標(biāo)為(3,0),P點(diǎn)坐標(biāo)(0,h),由旋轉(zhuǎn)的特性,可得C點(diǎn)坐標(biāo)為(-h,h-1),D點(diǎn)坐標(biāo)(h,h+3),

可得CD的解析式,可得Q點(diǎn)坐標(biāo)及PQ的長(zhǎng).

解:(1) 多項(xiàng)式(x2mx+8)(x2-3xn)的積中不含 x3項(xiàng)和 x2項(xiàng),

展開(kāi)得:

=

m-3=0,=0,

解得:m=3,n=1,

=ABOP= 2h=h;

(2)①如圖:

由題意得:DPPB,CPPA,且 PDPB,PCAP,

∠APB=∠APB, ∠APC+∠APB=∠BPD+∠APB

∠APC=∠BPD,

在△BPC與△DPA中,

PDPB,PCAP,∠APC=∠BPD

△BPC≌△DPA,∠C=∠A

在CB的線(xiàn)段上取F點(diǎn),使得CF=AE,連接PF,

在△CPF與△APE中,

∠C=∠A,CF=AE,PCAP,

△CPF≌△APE,PF=PE, ∠CPF= ∠APE,

∠FPE=90,又PF=PE,

△PEF為等腰直角三角形,

∠PEF=45,

∠BEP=135.

②由DPPBCPPA,且 PDPB,PCAP,A點(diǎn)坐標(biāo)為(1,0),B點(diǎn)坐標(biāo)為(3,0),P點(diǎn)坐標(biāo)(0,h),由旋轉(zhuǎn)的特性,可得C點(diǎn)坐標(biāo)為(-h,h-1),D點(diǎn)坐標(biāo)(h,h+3),

設(shè)CD的解析式為y=kx+b,代入CD兩點(diǎn)坐標(biāo),可得CD解析式為:

Q點(diǎn)坐標(biāo)為(0,h+1),

P點(diǎn)坐標(biāo)為(0,h),

PQ的長(zhǎng)為定值為:h+1-h=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是(
A.當(dāng)m=﹣3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(
B.當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線(xiàn)段長(zhǎng)度大于
C.當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過(guò)同一個(gè)點(diǎn)
D.當(dāng)m<0時(shí),函數(shù)在x 時(shí),y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在植樹(shù)節(jié)到來(lái)之際,某小區(qū)計(jì)劃購(gòu)進(jìn)A、B兩種樹(shù)苗共17棵,已知A種樹(shù)苗每棵80元,B種樹(shù)苗每棵60元.
(1)若購(gòu)進(jìn)A、B兩種樹(shù)苗剛好用去1220元,問(wèn)購(gòu)進(jìn)A、B兩種樹(shù)苗各多少棵?
(2)若購(gòu)買(mǎi)B種樹(shù)苗的數(shù)量少于A種樹(shù)苗的數(shù)量,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:

(1) [(xy)2(xy)(xy)]÷2x,其中 x=3,y=-2

(2)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線(xiàn)AB,CD相交于點(diǎn)O,OECD于點(diǎn)O,OD平分∠BOF,BOE=50°,求∠AOC、EOF與∠AOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B、C在數(shù)軸上,O為原點(diǎn),且BO:OC:CA=2:1:5.

(1)如果點(diǎn)C表示的數(shù)是x,請(qǐng)直接寫(xiě)出點(diǎn)A、B表示的數(shù);

(2)如果點(diǎn)A表示的數(shù)比點(diǎn)C表示的數(shù)兩倍還大4,求線(xiàn)段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中小正方形的邊長(zhǎng)為1,△ABC的三個(gè)頂點(diǎn)都在小正方形的格點(diǎn)上,求:

(1)邊AC,AB,BC的長(zhǎng);

(2)點(diǎn)CAB邊的距離;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B兩個(gè)小集鎮(zhèn)在河流CD的同側(cè),分別到河的距離為AC=10千米,BD=30千米,且CD=30千米,現(xiàn)在要在河邊建一自來(lái)水廠(chǎng),向A、B兩鎮(zhèn)供水,鋪設(shè)水管的費(fèi)用為每千米3萬(wàn),請(qǐng)你在河流CD上選擇水廠(chǎng)的位置M,使鋪設(shè)水管的費(fèi)用最節(jié)省,并求出總費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O1、圓O2的半徑不相等,圓O1的半徑長(zhǎng)為3,若圓O2上的點(diǎn)A滿(mǎn)足AO1=3,則圓O1與圓O2的位置關(guān)系是(
A.相交或相切
B.相切或相離
C.相交或內(nèi)含
D.相切或內(nèi)含

查看答案和解析>>

同步練習(xí)冊(cè)答案